
 PAGE 1 OF 79

Miluim_Hayalim_Site Scan Report
Project Name Miluim_Hayalim_Site
Scan Start Monday, December 28, 2015 6:35:36 PM
Preset Default 2014
Scan Time 00h:05m:01s
Lines Of Code Scanned 72,997
Files Scanned 201
Report Creation Time Monday, December 28, 2015 7:38:48 PM

Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&p
rojectid=36

Team Users
Checkmarx Version 7.1.8 HF2
Scan Type Full
Source Origin LocalPath
Density 1/1000 (Vulnerabilities/LOC)

Result Summary Most Vulnerable Files

High
Medium
Low

DisplayOrderPrint.asp
x.cs
LeaveInUnit.aspx.cs
web.config
Applications.aspx.cs
VolunteeringByAge.as
px.cs

Top 5 Vulnerabilities

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36

 PAGE 2 OF 79

Results Distribution By Status
First scan of the project

High Medium Low Information Total
New Issues 51 13 9 0 73
Recurrent Issues 0 0 0 0 0
Total 51 13 9 0 73

Fixed Issues 0 0 0 0 0

New Scan
Previous Scan

Results Distribution By State

High Medium Low Information Total
To Verify 51 13 9 0 73
Not Exploitable 0 0 0 0 0
Confirmed 0 0 0 0 0
Urgent 0 0 0 0 0
Total 51 13 9 0 73

Result Summary

Vulnerability Type Occurrences Severity
Reflected XSS All Clients 50 High
Client DOM XSS 1 High
Client Potential XSS 3 Medium
Data Filter Injection 3 Medium
Heap Inspection 3 Medium
Client Cross Frame Scripting Attack 1 Medium
CookieLess Authentication 1 Medium
Reflected XSS Specific Clients 1 Medium
RequireSSL 1 Medium
Client Heuristic Poor XSS Validation 2 Low
Unprotected Cookie 2 Low
Client DOM Open Redirect 1 Low

 PAGE 3 OF 79

Client Insecure Randomness 1 Low
DebugEnabled 1 Low
NonUniqueFormName 1 Low
SlidingExpiration 1 Low

10 Most Vulnerable Files
High and Medium Vulnerabilities

File Name Issues Found
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs 9
/MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs 6
/MiluimHayalim-Site/Templates/Applications/Applications.aspx.cs 4
/MiluimHayalim-Site/Templates/Forms/VolunteeringByAge.aspx.cs 4
/MiluimHayalim-Site/Templates/Login/Login.aspx.cs 4
/MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs 3
/MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs 3
/MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs 3
/MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs 3
/MiluimHayalim-Site/Js/Forms/forms.js 3

 PAGE 4 OF 79

Scan Results Details
Number of results is limited to 50 for each vulnerability. To get more results please change a setting "Limit results to 50" in report
creation wizard.

Reflected XSS All Clients
Description
Reflected XSS All Clients\Path 25:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=25
Status New

Method DisplayOtekTzavRemark at line 119 of /MiluimHayalim-
Site/Ajax/Order/DisplayConfirmMessage.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method DisplayOtekTzavRemark at line 119 of
/MiluimHayalim-Site/Ajax/Order/DisplayConfirmMessage.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayConfirmMessage.
aspx.cs

/MiluimHayalim-
Site/Ajax/Order/DisplayConfirmMessage.
aspx.cs

Line 130 130

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayConfirmMessage.aspx.cs
Method private void DisplayOtekTzavRemark()

....
130. ltrlDays.Text =
Utils.GetObjectContent(row["sending_order_days"], 0).ToString();

Reflected XSS All Clients\Path 26:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=26
Status New

Method GetDBData at line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

/MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

Line 88 88

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=25
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=25
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=26
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=26

 PAGE 5 OF 79

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs
Method private void GetDBData()

....
88. ltrlFullName.Text = string.Format("{0}
{1}", Utils.GetObjectContent(row["SHEM_PRATI"]),
Utils.GetObjectContent(row["SHEM_MISHPACHA"]));

Reflected XSS All Clients\Path 27:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=27
Status New

Method GetDBData at line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

/MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

Line 88 88

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs
Method private void GetDBData()

....
88. ltrlFullName.Text = string.Format("{0}
{1}", Utils.GetObjectContent(row["SHEM_PRATI"]),
Utils.GetObjectContent(row["SHEM_MISHPACHA"]));

Reflected XSS All Clients\Path 28:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=28
Status New

Method GetDBData at line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 75 of /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=27
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=27
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=28
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=28

 PAGE 6 OF 79

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

/MiluimHayalim-
Site/Ajax/Order/DisplayOrder.aspx.cs

Line 89 89

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrder.aspx.cs
Method private void GetDBData()

....
89. ltrlOrderNum.Text =
Utils.GetObjectContent(row["MISPAR_TZAV"]);

Reflected XSS All Clients\Path 29:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=29
Status New

Method GetDBData at line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 92 92

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void GetDBData()

....
92. ltrlFullName.Text = string.Format("{0}
{1}",
Utils.GetObjectContent(row["SHEM_PRATI"]),Utils.GetObjectContent(row["SH
EM_MISHPACHA"]));

Reflected XSS All Clients\Path 30:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=30
Status New

Method GetDBData at line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=29
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=29
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=30
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=30

 PAGE 7 OF 79

properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 92 92

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void GetDBData()

....
92. ltrlFullName.Text = string.Format("{0}
{1}",
Utils.GetObjectContent(row["SHEM_PRATI"]),Utils.GetObjectContent(row["SH
EM_MISHPACHA"]));

Reflected XSS All Clients\Path 31:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=31
Status New

Method GetDBData at line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetDBData at
line 79 of /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 93 93

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void GetDBData()

....
93. ltrlOrderNum.Text =
Utils.GetObjectContent(row["MISPAR_TZAV"]);

Reflected XSS All Clients\Path 32:
Severity High
Result State To Verify

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=31
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=31

 PAGE 8 OF 79

Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid
=36&pathid=32

Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 111 111

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

....
111. ltrlOffMisparIshi.Text =
Utils.GetObjectContent(row["MISPAR_ISHI_KTZINA_BATZAV"]);

Reflected XSS All Clients\Path 33:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=33
Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 112 112

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=32
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=32
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=33
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=33

 PAGE 9 OF 79

....
112. ltrlOffDarga.Text =
Utils.GetObjectContent(row["SHEM_DARGA"]);

Reflected XSS All Clients\Path 34:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=34
Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 113 113

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

....
113. ltrlOffFName.Text =
Utils.GetObjectContent(row["SHEM_PRATI_KTZINA_BATZAV"]);

Reflected XSS All Clients\Path 35:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=35
Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=34
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=34
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=35
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=35

 PAGE 10 OF 79

Line 114 114

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

....
114. ltrlOffLName.Text =
Utils.GetObjectContent(row["SHEM_MISHPACHA_KTZINA_BATZAV"]);

Reflected XSS All Clients\Path 36:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=36
Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of
/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 115 115

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

....
115. ltrlOffTafkid.Text =
Utils.GetObjectContent(row["TAFKID_KTZINA_BATZAV"]);

Reflected XSS All Clients\Path 37:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=37
Status New

Method SetCommOfficerDetails at line 107 of /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.cs gets user input for the row element. This element’s
value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SetCommOfficerDetails at line 107 of

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=36
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=36
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=37
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=37

 PAGE 11 OF 79

/MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

/MiluimHayalim-
Site/Ajax/Order/DisplayOrderPrint.aspx.c
s

Line 116 116

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Ajax/Order/DisplayOrderPrint.aspx.cs
Method private void SetCommOfficerDetails(DataRow row)

....
116. ltrlOffDoar.Text =
Utils.GetObjectContent(row["DOAR_TZVAI_BATZAV"]);

Reflected XSS All Clients\Path 38:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=38
Status New

Method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

/MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

Line 92 92

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Applications/Applications.aspx.cs
Method private void GetKSData()

....
92. ltrlOrederPreviewText.Text =
Utils.GetObjectContent(row["applications_by_order_preview_text"]);

Reflected XSS All Clients\Path 39:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=39

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=38
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=38
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=39
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=39

 PAGE 12 OF 79

Status New

Method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

/MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

Line 92 93

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Applications/Applications.aspx.cs
Method private void GetKSData()

....
92. ltrlOrederPreviewText.Text =
Utils.GetObjectContent(row["applications_by_order_preview_text"]);
93. if (ltrlOrederPreviewText.Text !=
string.Empty)

Reflected XSS All Clients\Path 40:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=40
Status New

Method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

/MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

Line 97 97

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Applications/Applications.aspx.cs
Method private void GetKSData()

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=40
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=40

 PAGE 13 OF 79

....
97. ltrlAppPreviewText.Text =
Utils.GetObjectContent(row["applications_preview_text"]);

Reflected XSS All Clients\Path 41:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=41
Status New

Method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 83 of /MiluimHayalim-
Site/Templates/Applications/Applications.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

/MiluimHayalim-
Site/Templates/Applications/Applications
.aspx.cs

Line 97 98

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Applications/Applications.aspx.cs
Method private void GetKSData()

....
97. ltrlAppPreviewText.Text =
Utils.GetObjectContent(row["applications_preview_text"]);
98. if (ltrlAppPreviewText.Text !=
string.Empty)

Reflected XSS All Clients\Path 42:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=42
Status New

Method GetKSData at line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetKSData at
line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=41
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=41
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=42
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=42

 PAGE 14 OF 79

Line 92 92

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs
Method private void GetKSData()

....
92. ltrlPreviewText.Text =
Utils.GetObjectContent(row["change_unit_preview_text"]);

Reflected XSS All Clients\Path 43:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=43
Status New

Method GetKSData at line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetKSData at
line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

Line 92 93

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs
Method private void GetKSData()

....
92. ltrlPreviewText.Text =
Utils.GetObjectContent(row["change_unit_preview_text"]);
93. if (ltrlPreviewText.Text != string.Empty)

Reflected XSS All Clients\Path 44:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=44
Status New

Method GetKSData at line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetKSData at
line 83 of /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs. This may enable a Cross-
Site-Scripting attack.

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=43
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=43
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=44
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=44

 PAGE 15 OF 79

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/ChangeUnit.aspx.
cs

Line 110 110

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/ChangeUnit.aspx.cs
Method private void GetKSData()

....
110. ltrlTerms.Text =
Utils.GetObjectContent(row["change_unit_terms"]);

Reflected XSS All Clients\Path 45:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=45
Status New

Method GetKSData at line 110 of /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method GetKSData at
line 110 of /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/Form3010.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/Form3010.aspx.cs

Line 119 119

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs
Method private void GetKSData()

....
119. ltrlPreviewText.Text =
Utils.GetObjectContent(row["preview_text_3010"]);

Reflected XSS All Clients\Path 46:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=46
Status New

Method GetKSData at line 110 of /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=45
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=45
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=46
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=46

 PAGE 16 OF 79

properly sanitized or validated and is eventually displayed to the user in method GetKSData at
line 110 of /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/Form3010.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/Form3010.aspx.cs

Line 119 120

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/Form3010.aspx.cs
Method private void GetKSData()

....
119. ltrlPreviewText.Text =
Utils.GetObjectContent(row["preview_text_3010"]);
120. if (ltrlPreviewText.Text == string.Empty)

Reflected XSS All Clients\Path 47:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=47
Status New

Method GetKSData at line 76 of /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 76 of /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs. This
may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

/MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

Line 85 85

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs
Method private void GetKSData()

....
85. ltrlPreviewText.Text =
Utils.GetObjectContent(row["gen_petition_preview_text"]);

Reflected XSS All Clients\Path 48:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=48

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=47
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=47
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=48
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=48

 PAGE 17 OF 79

Status New

Method GetKSData at line 76 of /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 76 of /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs. This
may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

/MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

Line 85 86

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs
Method private void GetKSData()

....
85. ltrlPreviewText.Text =
Utils.GetObjectContent(row["gen_petition_preview_text"]);
86. if (ltrlPreviewText.Text == string.Empty)

Reflected XSS All Clients\Path 49:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=49
Status New

Method GetBakashot at line 121 of /MiluimHayalim-
Site/Templates/Forms/GeneralPetition.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetBakashot at line 121 of /MiluimHayalim-
Site/Templates/Forms/GeneralPetition.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

/MiluimHayalim-
Site/Templates/Forms/GeneralPetition.as
px.cs

Line 144 162

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/GeneralPetition.aspx.cs
Method private void GetBakashot()

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=49
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=49

 PAGE 18 OF 79

....
144. SugBakashaId =
Utils.GetObjectContent(row["SugBakashaKlalitID"]);
....
162. ltrlJS.Text = string.Format("\n <script
type='text/javascript'>{0}</script> \n", sb.ToString());

Reflected XSS All Clients\Path 50:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=50
Status New

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

Line 166 166

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
166. ltrlPreviewText.Text =
Utils.GetObjectContent(row["leave_in_unit_preview_text"]);

Reflected XSS All Clients\Path 51:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=51
Status New

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=50
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=50
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=51
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=51

 PAGE 19 OF 79

Line 166 167

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
166. ltrlPreviewText.Text =
Utils.GetObjectContent(row["leave_in_unit_preview_text"]);
167. if (ltrlPreviewText.Text != string.Empty)

Reflected XSS All Clients\Path 52:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=52
Status New

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

Line 183 183

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
183. ltrlTwoBrothersText.Text =
Utils.GetObjectContent(row["leave_in_unit_two_brothers_text"]);

Reflected XSS All Clients\Path 53:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=53
Status New

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=52
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=52
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=53
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=53

 PAGE 20 OF 79

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

Line 197 197

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
197. ltrlProfileText.Text =
Utils.GetObjectContent(row["leave_in_unit_profile_text"]);

Reflected XSS All Clients\Path 54:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=54
Status New

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

Line 198 198

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
198. ltrlViturText.Text =
Utils.GetObjectContent(row["leave_in_unit_vitur_text"]);

Reflected XSS All Clients\Path 55:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=55
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=54
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=54
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=55
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=55

 PAGE 21 OF 79

Method GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 157 of /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

/MiluimHayalim-
Site/Templates/Forms/LeaveInUnit.aspx.
cs

Line 199 199

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/LeaveInUnit.aspx.cs
Method private void GetKSData()

....
199. ltrlGeneralText.Text =
Utils.fromTextArea(row["leave_in_unit_general_text"]);

Reflected XSS All Clients\Path 56:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=56
Status New

Method GetKSData at line 82 of /MiluimHayalim-
Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs gets user input for the row element.
This element’s value then flows through the code without being properly sanitized or validated
and is eventually displayed to the user in method GetKSData at line 82 of /MiluimHayalim-
Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/MedicalCommittee
Request.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/MedicalCommittee
Request.aspx.cs

Line 91 91

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs
Method private void GetKSData()

....
91. ltrlPreviewText.Text =
Utils.GetObjectContent(row["medical_com_preview_text"]);

Reflected XSS All Clients\Path 57:
Severity High

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=56
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=56

 PAGE 22 OF 79

Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=57
Status New

Method GetKSData at line 82 of /MiluimHayalim-
Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs gets user input for the row element.
This element’s value then flows through the code without being properly sanitized or validated
and is eventually displayed to the user in method GetKSData at line 82 of /MiluimHayalim-
Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/MedicalCommittee
Request.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/MedicalCommittee
Request.aspx.cs

Line 91 92

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/MedicalCommitteeRequest.aspx.cs
Method private void GetKSData()

....
91. ltrlPreviewText.Text =
Utils.GetObjectContent(row["medical_com_preview_text"]);
92. if (ltrlPreviewText.Text != string.Empty)

Reflected XSS All Clients\Path 58:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=58
Status New

Method GetKSData at line 89 of /MiluimHayalim-
Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs gets user input for the row
element. This element’s value then flows through the code without being properly sanitized or
validated and is eventually displayed to the user in method GetKSData at line 89 of
/MiluimHayalim-Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs. This may enable
a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/MentalHealthOffic
erContacting.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/MentalHealthOffic
erContacting.aspx.cs

Line 98 98

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs
Method private void GetKSData()

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=57
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=57
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=58
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=58

 PAGE 23 OF 79

....
98. ltrlPreviewText.Text =
Utils.GetObjectContent(row["mental_health_preview_text"]);

Reflected XSS All Clients\Path 59:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=59
Status New

Method GetKSData at line 89 of /MiluimHayalim-
Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs gets user input for the row
element. This element’s value then flows through the code without being properly sanitized or
validated and is eventually displayed to the user in method GetKSData at line 89 of
/MiluimHayalim-Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs. This may enable
a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/MentalHealthOffic
erContacting.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/MentalHealthOffic
erContacting.aspx.cs

Line 98 99

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/MentalHealthOfficerContacting.aspx.cs
Method private void GetKSData()

....
98. ltrlPreviewText.Text =
Utils.GetObjectContent(row["mental_health_preview_text"]);
99. if (ltrlPreviewText.Text != string.Empty)

Reflected XSS All Clients\Path 60:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=60
Status New

Method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=59
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=59
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=60
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=60

 PAGE 24 OF 79

Line 167 167

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/VolunteeringByAge.aspx.cs
Method private void GetKSData()

....
167. ltrlPreviewText.Text =
Utils.GetObjectContent(row["vol_by_age_preview_text"]);

Reflected XSS All Clients\Path 61:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=61
Status New

Method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

Line 167 168

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/VolunteeringByAge.aspx.cs
Method private void GetKSData()

....
167. ltrlPreviewText.Text =
Utils.GetObjectContent(row["vol_by_age_preview_text"]);
168. if (ltrlPreviewText.Text != string.Empty)

Reflected XSS All Clients\Path 62:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=62
Status New

Method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 158 of /MiluimHayalim-

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=61
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=61
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=62
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=62

 PAGE 25 OF 79

Site/Templates/Forms/VolunteeringByAge.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

Line 189 189

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/VolunteeringByAge.aspx.cs
Method private void GetKSData()

....
189. ltrlProfile.Text =
Utils.GetObjectContent(row["vol_by_age_profile_text"]);

Reflected XSS All Clients\Path 63:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=63
Status New

Method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 158 of /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAge.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

/MiluimHayalim-
Site/Templates/Forms/VolunteeringByAg
e.aspx.cs

Line 198 201

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Forms/VolunteeringByAge.aspx.cs
Method private void GetKSData()

....
198. string highlightsApproval =
Utils.GetObjectContent(row["vol_by_age_highlights_approval"]);
....
201. ltrlHighlightsApproval.Text =
highlightsApproval;

Reflected XSS All Clients\Path 64:
Severity High

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=63
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=63

 PAGE 26 OF 79

Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=64
Status New

Method DisplayDesc at line 98 of /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
DisplayDesc at line 98 of /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs. This
may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/ForgotPassword.as
px.cs

/MiluimHayalim-
Site/Templates/Login/ForgotPassword.as
px.cs

Line 113 113

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs
Method private void DisplayDesc()

....
113. ltrlDesc.Text =
row["forgot_password_desc"].ToString();

Reflected XSS All Clients\Path 65:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=65
Status New

Method DisplayDesc at line 98 of /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
DisplayDesc at line 98 of /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs. This
may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/ForgotPassword.as
px.cs

/MiluimHayalim-
Site/Templates/Login/ForgotPassword.as
px.cs

Line 118 118

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/ForgotPassword.aspx.cs
Method private void DisplayDesc()

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=64
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=64
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=65
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=65

 PAGE 27 OF 79

....
118. ltrlDesc.Text =
row["new_password_first_login_desc"].ToString();

Reflected XSS All Clients\Path 66:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=66
Status New

Method DisplayDesc at line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

/MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

Line 105 105

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/Login.aspx.cs
Method private void DisplayDesc()

....
105. ltrlDesc.Text =
row["login_preview_text"].ToString();

Reflected XSS All Clients\Path 67:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=67
Status New

Method DisplayDesc at line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

/MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

Line 105 106

Object row Text

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=66
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=66
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=67
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=67

 PAGE 28 OF 79

File Name /MiluimHayalim-Site/Templates/Login/Login.aspx.cs
Method private void DisplayDesc()

....
105. ltrlDesc.Text =
row["login_preview_text"].ToString();
106. ltrlFirstLoginText.Text =
row["first_login_text"].ToString();

Reflected XSS All Clients\Path 68:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=68
Status New

Method DisplayDesc at line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 96 of /MiluimHayalim-Site/Templates/Login/Login.aspx.cs. This may enable a Cross-Site-
Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

/MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

Line 106 106

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/Login.aspx.cs
Method private void DisplayDesc()

....
106. ltrlFirstLoginText.Text =
row["first_login_text"].ToString();

Reflected XSS All Clients\Path 69:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=69
Status New

Method DisplayDesc at line 97 of /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs gets
user input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 97 of /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Login/SMSVerify.aspx.cs

/MiluimHayalim-
Site/Templates/Login/SMSVerify.aspx.cs

Line 114 114

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=68
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=68
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=69
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=69

 PAGE 29 OF 79

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs
Method private void DisplayDesc()

....
114. ltrlDesc.Text =
row["sms_verify_desc"].ToString();

Reflected XSS All Clients\Path 70:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=70
Status New

Method GetUserNayad at line 697 of /MiluimHayalim-Site/App_Code/CacheHelper.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 97 of /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/App_Code/CacheHelper.cs

/MiluimHayalim-
Site/Templates/Login/SMSVerify.aspx.cs

Line 709 117

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/App_Code/CacheHelper.cs
Method public static string GetUserNayad(int id)

....
709. nayad = string.Format("{0}{1}",
row["KIDOMET_TELEFON_NAYAD"], row["TELEFON_NAYAD"]);

File Name /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs

Method private void DisplayDesc()

....
117. ltrlNayad.Text = nayad;

Reflected XSS All Clients\Path 71:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=71
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=70
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=70
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=71
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=71

 PAGE 30 OF 79

Method GetUserNayad at line 697 of /MiluimHayalim-Site/App_Code/CacheHelper.cs gets user
input for the row element. This element’s value then flows through the code without being
properly sanitized or validated and is eventually displayed to the user in method DisplayDesc at
line 97 of /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs. This may enable a Cross-
Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/App_Code/CacheHelper.cs

/MiluimHayalim-
Site/Templates/Login/SMSVerify.aspx.cs

Line 709 117

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/App_Code/CacheHelper.cs
Method public static string GetUserNayad(int id)

....
709. nayad = string.Format("{0}{1}",
row["KIDOMET_TELEFON_NAYAD"], row["TELEFON_NAYAD"]);

File Name /MiluimHayalim-Site/Templates/Login/SMSVerify.aspx.cs

Method private void DisplayDesc()

....
117. ltrlNayad.Text = nayad;

Reflected XSS All Clients\Path 72:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=72
Status New

Method GetKSData at line 54 of /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 54 of /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Messages/Messages.aspx
.cs

/MiluimHayalim-
Site/Templates/Messages/Messages.aspx
.cs

Line 63 63

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs
Method private void GetKSData()

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=72
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=72

 PAGE 31 OF 79

....
63. ltrlMessagesPreviewText.Text =
Utils.GetObjectContent(row["messages_preview_text"]);

Reflected XSS All Clients\Path 73:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=73
Status New

Method GetKSData at line 54 of /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs
gets user input for the row element. This element’s value then flows through the code without
being properly sanitized or validated and is eventually displayed to the user in method
GetKSData at line 54 of /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs. This may
enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Messages/Messages.aspx
.cs

/MiluimHayalim-
Site/Templates/Messages/Messages.aspx
.cs

Line 63 64

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/Messages/Messages.aspx.cs
Method private void GetKSData()

....
63. ltrlMessagesPreviewText.Text =
Utils.GetObjectContent(row["messages_preview_text"]);
64. if (ltrlMessagesPreviewText.Text !=
string.Empty)

Reflected XSS All Clients\Path 74:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=74
Status New

Method GetKSData at line 114 of /MiluimHayalim-
Site/Templates/OrdersForms/ShamapChange.aspx.cs gets user input for the row element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method GetKSData at line 114 of /MiluimHayalim-
Site/Templates/OrdersForms/ShamapChange.aspx.cs. This may enable a Cross-Site-Scripting
attack.

Source Destination

File /MiluimHayalim-
Site/Templates/OrdersForms/ShamapCh
ange.aspx.cs

/MiluimHayalim-
Site/Templates/OrdersForms/ShamapCh
ange.aspx.cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=73
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=73
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=74
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=74

 PAGE 32 OF 79

Line 123 123

Object row Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/OrdersForms/ShamapChange.aspx.cs
Method private void GetKSData()

....
123. ltrlPreviewText.Text =
Utils.GetObjectContent(row["shamap_preview_text"]);

Client DOM XSS
Description
Client DOM XSS\Path 3:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=3
Status New

Method P at line 284 of /MiluimHayalim-Site/Js/Forms/swfobject.js gets user input for the
toString element. This element’s value then flows through client-side code without being
properly sanitized or validated and is eventually displayed to the user in u at line 369 of
/MiluimHayalim-Site/Js/Forms/swfobject.js.This may enable a DOM XSS attack.

Source Destination

File /MiluimHayalim-
Site/Js/Forms/swfobject.js

/MiluimHayalim-
Site/Js/Forms/swfobject.js

Line 309 401

Object toString outerHTML

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/swfobject.js
Method function P(aa, ab, X, Z) {

....
309. ac = "MMredirectURL=" +
O.location.toString().replace(/&/g, "%26") + "&MMplayerType=" + ad +
"&MMdoctitle=" + j.title;

File Name /MiluimHayalim-Site/Js/Forms/swfobject.js

Method function u(ai, ag, Y) {

....
401. aa.outerHTML = '<object classid="clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000"' + ah + ">" + af + "</object>";

Client Potential XSS
Description

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=3
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=3

 PAGE 33 OF 79

Client Potential XSS\Path 10:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=10
Status New

Method FillInTatBakashot at line 183 of /MiluimHayalim-Site/Js/Forms/forms.js gets user input
for the text element. This element’s value then flows through the code without being properly
sanitized or validated and is eventually displayed to the user in method FillInTatBakashot at line
183 of /MiluimHayalim-Site/Js/Forms/forms.js. This may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-Site/Js/Forms/forms.js /MiluimHayalim-Site/Js/Forms/forms.js

Line 186 188

Object text append

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/forms.js
Method function FillInTatBakashot(val) {

....
186. var firstText = $(".sel-tat-bakasha").find('option')[0].text;
....
188. $('.sel-tat-bakasha').append($('<option>', {

Client Potential XSS\Path 11:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=11
Status New

Method $ at line 204 of /MiluimHayalim-Site/Js/Forms/forms.js gets user input for the text
element. This element’s value then flows through the code without being properly sanitized or
validated and is eventually displayed to the user in method FillInTatBakashot at line 183 of
/MiluimHayalim-Site/Js/Forms/forms.js. This may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-Site/Js/Forms/forms.js /MiluimHayalim-Site/Js/Forms/forms.js

Line 206 204

Object text append

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/forms.js
Method $('.sel-tat-bakasha').append($('<option>', {

....
206. text: arrBakashot[i].items[j].text

File Name /MiluimHayalim-Site/Js/Forms/forms.js

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=10
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=10
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=11
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=11

 PAGE 34 OF 79

Method function FillInTatBakashot(val) {

....
204. $('.sel-tat-bakasha').append($('<option>', {

Client Potential XSS\Path 12:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=12
Status New

Method $ at line 197 of /MiluimHayalim-Site/Js/Forms/forms.js gets user input for the text
element. This element’s value then flows through the code without being properly sanitized or
validated and is eventually displayed to the user in method FillInTatBakashot at line 183 of
/MiluimHayalim-Site/Js/Forms/forms.js. This may enable a Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-Site/Js/Forms/forms.js /MiluimHayalim-Site/Js/Forms/forms.js

Line 199 197

Object text append

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/forms.js
Method $('.sel-tat-bakasha').append($('<option>', {

....
199. text: arrBakashot[i].items[j].text,

File Name /MiluimHayalim-Site/Js/Forms/forms.js

Method function FillInTatBakashot(val) {

....
197. $('.sel-tat-bakasha').append($('<option>', {

Heap Inspection
Description
Heap Inspection\Path 17:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=17
Status New

Source Destination

File /MiluimHayalim-
Site/Templates/Login/ChangePassword.a
spx.cs

/MiluimHayalim-
Site/Templates/Login/ChangePassword.a
spx.cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=12
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=12
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=17
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=17

 PAGE 35 OF 79

Line 176 176

Object pass pass

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/ChangePassword.aspx.cs
Method protected void cvTxtPass1_ServerValidate(object source,

ServerValidateEventArgs args)

....
176. string pass=args.Value.Trim();

Heap Inspection\Path 18:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=18
Status New

Source Destination

File /MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

/MiluimHayalim-
Site/Templates/Login/Login.aspx.cs

Line 330 330

Object pass pass

Code Snippet
File Name /MiluimHayalim-Site/Templates/Login/Login.aspx.cs
Method protected void CvTxtPass_Validate(object source, ServerValidateEventArgs args)

....
330. string pass = args.Value.Trim();

Heap Inspection\Path 19:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=19
Status New

Source Destination

File /MiluimHayalim-
Site/UserControls/PersonalSettings/Chan
gePassword.ascx.cs

/MiluimHayalim-
Site/UserControls/PersonalSettings/Chan
gePassword.ascx.cs

Line 241 241

Object pass pass

Code Snippet
File Name /MiluimHayalim-Site/UserControls/PersonalSettings/ChangePassword.ascx.cs

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=18
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=18
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=19
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=19

 PAGE 36 OF 79

Method protected void cvTxtPass1_ServerValidate(object source,
ServerValidateEventArgs args)

....
241. string pass = args.Value.Trim();

Data Filter Injection
Description
Data Filter Injection\Path 122:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=122
Status New

Method rptOrders_ItemDataBound at line 118 of /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs gets user input from the row element. This element’s
value then flows through the code without being properly sanitized or validated, and is
eventually used in a query to the application server’s cached data, in rptOrders_ItemDataBound
at line 118 of /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs. This may enable a Data
Filter Injection attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

/MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

Line 127 127

Object row Select

Code Snippet
File Name /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs
Method protected void rptOrders_ItemDataBound(object sender, RepeaterItemEventArgs

e)

....
127. DataRow[] dr =
dtSpecRequests.Select(string.Format("MISPAR_SEQ={0}",
row["MISPAR_SEQ"]),"SpecialRequestID desc");

Data Filter Injection\Path 123:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=123
Status New

Method rptOrders_ItemDataBound at line 118 of /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs gets user input from the row element. This element’s
value then flows through the code without being properly sanitized or validated, and is
eventually used in a query to the application server’s cached data, in rptOrders_ItemDataBound
at line 118 of /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs. This may enable a Data
Filter Injection attack.

Source Destination

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=122
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=122
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=123
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=123

 PAGE 37 OF 79

File /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

/MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

Line 134 134

Object row Select

Code Snippet
File Name /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs
Method protected void rptOrders_ItemDataBound(object sender, RepeaterItemEventArgs

e)

....
134. dr =
dtPniot.Select(string.Format("MISPAR_SEQ={0}", row["MISPAR_SEQ"]),
"ApplicationID");

Data Filter Injection\Path 124:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=124
Status New

Method rptOrders_ItemDataBound at line 118 of /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs gets user input from the row element. This element’s
value then flows through the code without being properly sanitized or validated, and is
eventually used in a query to the application server’s cached data, in rptOrders_ItemDataBound
at line 118 of /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs. This may enable a Data
Filter Injection attack.

Source Destination

File /MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

/MiluimHayalim-
Site/Templates/Lobby/Lobby.aspx.cs

Line 142 142

Object row Select

Code Snippet
File Name /MiluimHayalim-Site/Templates/Lobby/Lobby.aspx.cs
Method protected void rptOrders_ItemDataBound(object sender, RepeaterItemEventArgs

e)

....
142. dr =
AllShamapPniot.Select(string.Format("MISPAR_SEQ={0}",
row["MISPAR_SEQ"]), "ApplicationID");

Client Cross Frame Scripting Attack
Description
Client Cross Frame Scripting Attack\Path 13:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=124
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=124
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=13

 PAGE 38 OF 79

=36&pathid=13
Status New

Source Destination

File /MiluimHayalim-Site/Ajax/AddChild.aspx /MiluimHayalim-Site/Ajax/AddChild.aspx

Line 1 1

Object CxJSNS_1140557385 CxJSNS_1140557385

Code Snippet
File Name /MiluimHayalim-Site/Ajax/AddChild.aspx
Method <%@ Page Language="C#" AutoEventWireup="true"

MasterPageFile="~/MasterPages/MasterPageEmpty.master"
CodeFile="AddChild.aspx.cs" Inherits="Scepia.Ajax.AddChild" %>

....
1. <%@ Page Language="C#" AutoEventWireup="true"
MasterPageFile="~/MasterPages/MasterPageEmpty.master"
CodeFile="AddChild.aspx.cs" Inherits="Scepia.Ajax.AddChild" %>

Reflected XSS Specific Clients
Description
Reflected XSS Specific Clients\Path 125:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=125
Status New

Method SoldierPersonalDetails at line 265 of /MiluimHayalim-
Site/Templates/PersonalDetails/PersonalDetails.aspx.cs gets user input for the r element. This
element’s value then flows through the code without being properly sanitized or validated and is
eventually displayed to the user in method SoldierPersonalDetails at line 265 of
/MiluimHayalim-Site/Templates/PersonalDetails/PersonalDetails.aspx.cs. This may enable a
Cross-Site-Scripting attack.

Source Destination

File /MiluimHayalim-
Site/Templates/PersonalDetails/Personal
Details.aspx.cs

/MiluimHayalim-
Site/Templates/PersonalDetails/Personal
Details.aspx.cs

Line 329 329

Object r Text

Code Snippet
File Name /MiluimHayalim-Site/Templates/PersonalDetails/PersonalDetails.aspx.cs
Method private void SoldierPersonalDetails()

....
329. hidMartialStatus.Text =
Utils.GetObjectContent(r["StatusMishpachtiID"]);

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=13
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=125
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=125

 PAGE 39 OF 79

CookieLess Authentication
Description
CookieLess Authentication\Path 126:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=126
Status New

Source Destination

File /MiluimHayalim-Site/web.config /MiluimHayalim-Site/web.config

Line 49 49

Object FORMS FORMS

Code Snippet
File Name /MiluimHayalim-Site/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
49. <forms loginUrl="~/Login" timeout="20" defaultUrl="~/Lobby"
/>

RequireSSL
Description
RequireSSL\Path 129:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=129
Status New

Source Destination

File /MiluimHayalim-Site/web.config /MiluimHayalim-Site/web.config

Line 49 49

Object FORMS FORMS

Code Snippet
File Name /MiluimHayalim-Site/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
49. <forms loginUrl="~/Login" timeout="20" defaultUrl="~/Lobby"
/>

Client Heuristic Poor XSS Validation
Description
Client Heuristic Poor XSS Validation\Path 21:
Severity Low
Result State To Verify

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=126
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=126
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=129
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=129

 PAGE 40 OF 79

Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid
=36&pathid=21

Status New

Source Destination

File /MiluimHayalim-
Site/Js/Forms/swfobject.js

/MiluimHayalim-
Site/Js/Forms/swfobject.js

Line 309 433

Object toString appendChild

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/swfobject.js
Method function P(aa, ab, X, Z) {

....
309. ac = "MMredirectURL=" +
O.location.toString().replace(/&/g, "%26") + "&MMplayerType=" + ad +
"&MMdoctitle=" + j.title;

File Name /MiluimHayalim-Site/Js/Forms/swfobject.js

Method function e(Z, X, Y) {

....
433. Z.appendChild(aa)

Client Heuristic Poor XSS Validation\Path 22:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=22
Status New

Source Destination

File /MiluimHayalim-
Site/Js/Forms/swfobject.js

/MiluimHayalim-
Site/Js/Forms/swfobject.js

Line 309 401

Object toString outerHTML

Code Snippet
File Name /MiluimHayalim-Site/Js/Forms/swfobject.js
Method function P(aa, ab, X, Z) {

....
309. ac = "MMredirectURL=" +
O.location.toString().replace(/&/g, "%26") + "&MMplayerType=" + ad +
"&MMdoctitle=" + j.title;

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=21
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=21
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=22
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=22

 PAGE 41 OF 79

File Name /MiluimHayalim-Site/Js/Forms/swfobject.js

Method function u(ai, ag, Y) {

....
401. aa.outerHTML = '<object classid="clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000"' + ah + ">" + af + "</object>";

Unprotected Cookie
Description
Unprotected Cookie\Path 23:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=23
Status New

Source Destination

File /MiluimHayalim-
Site/Templates/CellularReference/Cellula
rReference.aspx

/MiluimHayalim-
Site/Templates/CellularReference/Cellula
rReference.aspx

Line 64 64

Object setCookie setCookie

Code Snippet
File Name /MiluimHayalim-Site/Templates/CellularReference/CellularReference.aspx
Method function setCookie(cookieName, cookieValue) {

....
64. function setCookie(cookieName, cookieValue) {

Unprotected Cookie\Path 24:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=24
Status New

Source Destination

File /MiluimHayalim-
Site/Templates/CellularReference/Cellula
rReference.aspx

/MiluimHayalim-
Site/Templates/CellularReference/Cellula
rReference.aspx

Line 27 27

Object setCookie setCookie

Code Snippet
File Name /MiluimHayalim-Site/Templates/CellularReference/CellularReference.aspx
Method function cellularReferenceClick(url)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=23
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=23
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=24
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=24

 PAGE 42 OF 79

....
27. setCookie("IDF_cellular_dont_show", "");

Client DOM Open Redirect
Description
Client DOM Open Redirect\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=1
Status New

Source Destination

File /MiluimHayalim-
Site/UserControls/CellularReference/Cell
ularReference.ascx

/MiluimHayalim-
Site/UserControls/CellularReference/Cell
ularReference.ascx

Line 51 46

Object replace href

Code Snippet
File Name /MiluimHayalim-Site/UserControls/CellularReference/CellularReference.ascx
Method function getVirtualPath() {

....
51. return window.location.href.replace(_virtual_url, '');

File Name /MiluimHayalim-Site/UserControls/CellularReference/CellularReference.ascx

Method function DoRedirect()

....
46. window.location.href = url;

Client Insecure Randomness
Description
Client Insecure Randomness\Path 5:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=5
Status New

Source Destination

File /MiluimHayalim-Site/Js/bootstrap.min.js /MiluimHayalim-Site/Js/bootstrap.min.js

Line 930 930

Object random random

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=1
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=1
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=5
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=5

 PAGE 43 OF 79

Code Snippet
File Name /MiluimHayalim-Site/Js/bootstrap.min.js
Method c.prototype.getUID = function (a) {

....
930. do a += ~~ (1e6 * Math.random());

DebugEnabled
Description
DebugEnabled\Path 127:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=127
Status New

Source Destination

File /MiluimHayalim-Site/web.config /MiluimHayalim-Site/web.config

Line 47 47

Object "true" "true"

Code Snippet
File Name /MiluimHayalim-Site/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
47. <compilation debug="true" targetFramework="4.5" />

NonUniqueFormName
Description
NonUniqueFormName\Path 128:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=128
Status New

Source Destination

File /MiluimHayalim-Site/web.config /MiluimHayalim-Site/web.config

Line 49 49

Object FORMS FORMS

Code Snippet
File Name /MiluimHayalim-Site/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=127
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=127
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=128
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=128

 PAGE 44 OF 79

....
49. <forms loginUrl="~/Login" timeout="20" defaultUrl="~/Lobby"
/>

SlidingExpiration
Description
SlidingExpiration\Path 130:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid

=36&pathid=130
Status New

Source Destination

File /MiluimHayalim-Site/web.config /MiluimHayalim-Site/web.config

Line 49 49

Object FORMS FORMS

Code Snippet
File Name /MiluimHayalim-Site/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
49. <forms loginUrl="~/Login" timeout="20" defaultUrl="~/Lobby"
/>

Client DOM XSS
Risk
What might happen
An attacker could use social engineering to cause a user to send the website engineered input, such as a URL with an
engineered anchor, causing the browser to rewrite web pages.
The attacker can then pretend to be the original website, which would enable the attacker to steal the user's password,
request the user’s credit card information, provide false information, or run malware.
From the victim’s point of view, this is the original website, and the victim would blame the site for incurred damage.

Cause
How does it happen
The application web page includes data from user input (including the page URL). The user input is embedded in the
page, causing the browser to display it as part of the web page.
If the input includes HTML fragments or JavaScript, these are displayed too, and the user cannot tell that this is not the
intended page.
The vulnerability is the result of embedding arbitrary user input without first encoding it in a format that would prevent
the browser from treating it like HTML instead of plain text.

General Recommendations
How to avoid it

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=130
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000030&projectid=36&pathid=130

 PAGE 45 OF 79

1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

Check for:
● Data type
● Size
● Range
● Format
● Expected values

2. Fully encode all dynamic data before embedding it in the webpage.
3. Encoding should be context-sensitive. For example:

● HTML encoding for HTML content
● HTML Attribute encoding for data output to attribute values
● JavaScript encoding for JavaScript

4. Consider using the ESAPI4JS encoding library.

Source Code Examples

C#
For dynamically creating URLs in JavaScript, use the OWASP ESAPI4JS library:

window.location = ESAPI4JS.encodeForURL(input);

For creating dynamic HTML in JavaScript, use the OWASP ESAPI4JS library:

window.location = ESAPI4JS.encodeForURL(input);

Java
For dynamically creating URLs in JavaScript, use the OWASP ESAPI4JS library:

window.location = ESAPI4JS.encodeForURL(input);

For creating dynamic HTML in JavaScript, use the OWASP ESAPI4JS library:

window.location = ESAPI4JS.encodeForURL(input);

 PAGE 46 OF 79

Reflected XSS All Clients
Risk
What might happen
An attacker could use social engineering to cause a user to send the website engineered input, rewriting web pages and
inserting malicious scripts.
The attacker can then pretend to be the original website, which would enable the attacker to steal the user's password,
request the user’s credit card information, provide false information, or run malware.
From the victim’s point of view, this is the original website, and the victim would blame the site for incurred damage.

Cause
How does it happen
The application creates web pages that include data from previous user input. The user input is embedded directly in the
page's HTML, causing the browser to display it as part of the web page.
If the input includes HTML fragments or JavaScript, these are displayed too, and the user cannot tell that this is not the
intended page.
The vulnerability is the result of embedding arbitrary user input without first encoding it in a format that would prevent
the browser from treating it like HTML instead of plain text.

General Recommendations
How to avoid it
1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

Check for:
● Data type
● Size
● Range
● Format
● Expected values

2. Fully encode all dynamic data before embedding it in output.
3. Encoding should be context-sensitive. For example:

● HTML encoding for HTML content
● HTML Attribute encoding for data output to attribute values
● JavaScript encoding for server-generated JavaScript

4. Consider using either the ESAPI encoding library, or the built-in platform functions. For earlier versions of
ASP.NET, consider using the AntiXSS library.
5. In the Content-Type HTTP response header, explicitly define character encoding (charset) for the entire page.
6. Set the httpOnly flag on the session cookie, to prevent XSS exploits from stealing the cookie.

Source Code Examples

C#
The application uses the "Referer" field string to construct the HttpResponse

public class ReflectedXssAllClients
{
 public static void foo(HttpRequest Request, HttpResponse Response)
 {
 string Referer = Request.QueryString["Referer"];

 PAGE 47 OF 79

 Response.BinaryWrite(Referer);
 }
}

The "Referer" field string is HTML encoded before use

public class ReflectedXssAllClientsFixed
{
 public static void foo(HttpRequest Request, HttpResponse Response,
AntiXss.AntiXssEncoder encoder)
 {
 string Referer = Request.QueryString["Referer"];
 Response.BinaryWrite(encoder.HtmlEncode(Referer, true));
 }
}

User input is written to a TextBox displayed on the screen enabling a user to inject a script

public class ReflectedXSSSpecificClients
{
 public void foo(TextBox tb)
 {
 string input = Console.ReadLine();
 tb.Text = input;
 }
}

The user input is Html encoded before being displayed on the screen

public class ReflectedXSSSpecificClientsFixed
{
 public void foo(TextBox tb, AntiXssEncoder encode)
 {
 string input = Console.ReadLine();
 tb.Text = encode.HtmlEncode(input);
 }
}

The application uses the "filename" field string from an HttpRequest construct an HttpResponse

public class UTF7XSS
{
 public void foo(HttpRequest Request, HttpResponse Response
 {
 Response.Charset("UTF-7");
 string filename = Request.QueryString["filename"];
 Response.BinaryWrite(AntiXss.HtmlEncode(filename));
 }
}

The "filename" string is converted to an int and using a switch case the new "filename" string is constructed

public class UTF7XSSFixed
{
 public static void foo(HttpRequest Request, HttpResponse Response)
 {
 Response.Charset("UTF-7");
 string filename = Request.QueryString["fileNum"];

 PAGE 48 OF 79

 int fileNum = Convert.ToInt32(filename);

 switch(fileNum)
 {
 case 1:
 filename = "File1.txt";
 break;
 default:
 filename = "File2.txt";
 break;
 }

 Response.BinaryWrite(AntiXss.HtmlEncode(filename));
 }
}

 PAGE 49 OF 79

Client Potential XSS
Risk
What might happen
An attacker could use social engineering to cause a user to send the website engineered input, rewriting web pages and
inserting malicious scripts.
The attacker can then pretend to be the original website, which would enable the attacker to steal the user's password,
request the user’s credit card information, provide false information, or run malware.
From the victim’s point of view, this is the original website, and the victim would blame the site for incurred damage.

Cause
How does it happen
The application creates web pages that include data from previous user input. The user input is embedded directly in the
page's HTML, causing the browser to display it as part of the web page.
If the input includes HTML fragments or JavaScript, these are displayed too, and the user cannot tell that this is not the
intended page.
The vulnerability is the result of embedding arbitrary user input without first encoding it in a format that would prevent
the browser from treating it like HTML instead of plain text.

General Recommendations
How to avoid it
1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

Check for:
● Data type
● Size
● Range
● Format
● Expected values

2. Fully encode all dynamic data before embedding it in output.
3. Encoding should be context-sensitive. For example:

● HTML encoding for HTML content
● HTML Attribute encoding for data output to attribute values
● JavaScript encoding for server-generated JavaScript

4. Consider using either the ESAPI encoding library, or the built-in platform functions. For earlier versions of
ASP.NET, consider using the AntiXSS library.
5. In the Content-Type HTTP response header, explicitly define character encoding (charset) for the entire page.
6. Set the httpOnly flag on the session cookie, to prevent XSS exploits from stealing the cookie.

Source Code Examples

 PAGE 50 OF 79

Failure to Preserve Web Page Structure ('Cross-site Scripting')
Weakness ID: 79 (Weakness Base) Status: Usable
Description
Description Summary
The software does not sufficiently validate, filter, escape, and/or encode user-controllable input before it is
placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted
data.
3. During page generation, the application does not prevent the data from containing
content that is executable by a web browser, such as JavaScript, HTML tags, HTML
attributes, mouse events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains
malicious script that was injected using the untrusted data.
5. Since the script comes from a web page that was sent by the web server, the victim's
web browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which
states that scripts in one domain should not be able to access resources or run code in a
different domain.
There are three main kinds of XSS:
Type 1: Reflected XSS (or Non-Persistent)
The server reads data directly from the HTTP request and reflects it back in the HTTP
response. Reflected XSS exploits occur when an attacker causes a victim to supply
dangerous content to a vulnerable web application, which is then reflected back to the
victim and executed by the web browser. The most common mechanism for delivering
malicious content is to include it as a parameter in a URL that is posted publicly or e-
mailed directly to the victim. URLs constructed in this manner constitute the core of
many phishing schemes, whereby an attacker convinces a victim to visit a URL that
refers to a vulnerable site. After the site reflects the attacker's content back to the
victim, the content is executed by the victim's browser.
Type 2: Stored XSS (or Persistent)
The application stores dangerous data in a database, message forum, visitor log, or
other trusted data store. At a later time, the dangerous data is subsequently read back
into the application and included in dynamic content. From an attacker's perspective,
the optimal place to inject malicious content is in an area that is displayed to either
many users or particularly interesting users. Interesting users typically have elevated
privileges in the application or interact with sensitive data that is valuable to the
attacker. If one of these users executes malicious content, the attacker may be able to
perform privileged operations on behalf of the user or gain access to sensitive data
belonging to the user. For example, the attacker might inject XSS into a log message,
which might not be handled properly when an administrator views the logs.
Type 0: DOM-Based XSS
In DOM-based XSS, the client performs the injection of XSS into the page; in the other
types, the server performs the injection. DOM-based XSS generally involves server-
controlled, trusted script that is sent to the client, such as Javascript that performs

 PAGE 51 OF 79

sanity checks on a form before the user submits it. If the server-supplied script
processes user-supplied data and then injects it back into the web page (such as with
dynamic HTML), then DOM-based XSS is possible.
Once the malicious script is injected, the attacker can perform a variety of malicious
activities. The attacker could transfer private information, such as cookies that may
include session information, from the victim's machine to the attacker. The attacker
could send malicious requests to a web site on behalf of the victim, which could be
especially dangerous to the site if the victim has administrator privileges to manage that
site. Phishing attacks could be used to emulate trusted web sites and trick the victim
into entering a password, allowing the attacker to compromise the victim's account on
that web site. Finally, the script could exploit a vulnerability in the web browser itself
possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it.
Even with careful users, attackers frequently use a variety of methods to encode the
malicious portion of the attack, such as URL encoding or Unicode, so the request looks
less suspicious.
Alternate Terms
XSS

CSS: "CSS" was once used as the acronym for this problem, but this could cause confusion with "Cascading Style Sheets," so
usage of this acronym has declined significantly.

Time of Introduction

 Architecture and Design
 Implementation

Applicable Platforms
Languages
Language-independent
Architectural Paradigms
Web-based: (Often)

Technology Classes
Web-Server: (Often)

Platform Notes
XSS flaws are very common in web applications since they require a great deal of
developer discipline to avoid them.
Common Consequences
Scope Effect

Confidentiality The most common attack performed with cross-site scripting involves the disclosure of information stored in user
cookies. Typically, a malicious user will craft a client-side script, which -- when parsed by a web browser --
performs some activity (such as sending all site cookies to a given E-mail address). This script will be loaded and
run by each user visiting the web site. Since the site requesting to run the script has access to the cookies in
question, the malicious script does also.

Access Control In some circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting is
combined with other flaws.

Confidentiality
Integrity
Availability

The consequence of an XSS attack is the same regardless of whether it is stored or reflected. The difference is in
how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance to complete
account compromise. Some cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies,
create requests that can be mistaken for those of a valid user, compromise confidential information, or execute
malicious code on the end user systems for a variety of nefarious purposes. Other damaging attacks include the
disclosure of end user files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy, and

 PAGE 52 OF 79

modifying presentation of content.

Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated material to a
trusted web site for the consumption of other valid users, commonly on places such as bulletin-board web sites which provide web
based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook
entries, and all subsequent visitors to the guestbook page would execute the malicious code. As the examples demonstrate, XSS
vulnerabilities are caused by code that includes unvalidated data in an HTTP response.

Detection Methods
Automated Static Analysis
Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize
the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible, especially when
multiple components are involved.

Effectiveness: Moderate

Black Box
Use the XSS Cheat Sheet [REF-14] or automated test-generation tools to help launch a wide variety of attacks against your web
application. The Cheat Sheet contains many subtle XSS variations that are specifically targeted against weak XSS defenses.

Effectiveness: Moderate
With Stored XSS, the indirection caused by the data store can make it more difficult to find the problem. The tester must first
inject the XSS string into the data store, then find the appropriate application functionality in which the XSS string is sent to other
users of the application. These are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Demonstrative Examples
Example 1
This example covers a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and
displays it to the user.
(Bad Code)

Example Language: JSP
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP
request and displays it to the user.
(Bad Code)

Example Language: ASP.NET
...
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeeID" runat="server" /></p>
...

The code in this example operates correctly if the Employee ID variable contains only
standard alphanumeric text. If it has a value that includes meta-characters or source
code, then the code will be executed by the web browser as it displays the HTTP
response. Initially this might not appear to be much of a vulnerability. After all, why
would someone enter a URL that causes malicious code to run on their own computer?
The real danger is that an attacker will create the malicious URL, then use e-mail or
social engineering tricks to lure victims into visiting a link to the URL. When victims click
the link, they unwittingly reflect the malicious content through the vulnerable web

 PAGE 53 OF 79

application back to their own computers.
Example 2
This example covers a Stored XSS (Type 2) scenario.
The following JSP code segment queries a database for an employee with a given ID
and prints the corresponding employee's name.
(Bad Code)

Example Language: JSP
<%
...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
%>

Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given
employee ID and prints the name corresponding with the ID.
(Bad Code)

Example Language: ASP.NET
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a
database, whose contents are apparently managed by the application. However, if the
value of name originates from user-supplied data, then the database can be a conduit
for malicious content. Without proper input validation on all data stored in the database,
an attacker can execute malicious commands in the user's web browser.
Observed Examples
Reference Description

CVE-2008-5080 Chain: protection mechanism failure allows XSS

CVE-2006-4308 Chain: only checks "javascript:" tag

CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS

CVE-2008-5770 Reflected XSS using the PATH INFO in a URL

CVE-2008-4730 Reflected XSS not properly handled when generating an error message

CVE-2008-5734 Reflected XSS sent through email message.

CVE-2008-0971 Stored XSS in a security product.

CVE-2008-5249 Stored XSS using a wiki page.

CVE-2006-3568 Stored XSS in a guestbook application.

CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

CVE-2006-3295 Chain: library file is not protected against a direct request (CWE-425), leading to reflected XSS.

Potential Mitigations
Phase: Architecture and Design

Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness
easier to avoid.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5080
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5770
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4730
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5734
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3295

 PAGE 54 OF 79

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library,
the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially important when
transmitting data between different components, or when generating outputs that can contain multiple encodings at the same
time, such as web pages or multi-part mail messages. Study all expected communication protocols and data representations to
determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:

 HTML body

 Element attributes (such as src="XYZ")

 URIs

 JavaScript sections

 Cascading Style Sheets and style property
etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [REF-16] for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order
to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by
changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Implementation
Use and specify a strong character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified, the web browser
may choose a different encoding by guessing which encoding is actually being used by the web page. This can open you up to
subtle XSS attacks related to that encoding. See CWE-116 for more mitigations related to encoding/escaping.

Phase: Implementation
With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the
HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session
cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide
read access to HTTP headers, including the Set-Cookie header in which the HttpOnly flag is set.

Phase: Implementation

Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that
strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something
that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of
acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an
example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the
parameter in the request. All input should be validated and cleansed, not just parameters that the user is supposed to specify, but
all data in the request, including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to
continuing XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the application that the development team did not anticipate. Also, a
field that is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP request is
recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input
validation may provide some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will
not always prevent XSS, especially if you are required to support free-form text fields that could contain arbitrary characters. For
example, in a chat application, the heart emoticon ("<3") would likely pass the validation step, since it is commonly used.
However, it cannot be directly inserted into the web page because it contains the "<" character, which would need to be escaped
or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce incorrect behavior because
the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would be more important in a
mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to
protect you from injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it

 PAGE 55 OF 79

may significantly reduce your attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application
even if a component is reused or moved elsewhere.

Phase: Operation
Use an application firewall that can detect attacks against this weakness. This might not catch all attacks, and it might require
some effort for customization. However, it can be beneficial in cases in which the code cannot be fixed (because it is controlled by
a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

Background Details

Same Origin Policy
The same origin policy states that browsers should limit the resources accessible to scripts running on a given web site , or
"origin", to the resources associated with that web site on the client-side, and not the client-side resources of any other sites or
"origins". The goal is to prevent one site from being able to modify or read the contents of an unrelated site. Since the World Wide
Web involves interactions between many sites, this policy is important for browsers to enforce.

Domain
The Domain of a website when referring to XSS is roughly equivalent to the resources associated with that website on the client-
side of the connection. That is, the domain can be thought of as all resources the browser is storing for the user's interactions with
this particular site.

Weakness Ordinalities
Ordinality Description

Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name

View(s) this relationship pertains to
Named Chain(s)
this relationship

pertains to
ChildOf Weakness

Class
20 Improper Input Validation Seven Pernicious Kingdoms

(primary)700
ChildOf Weakness

Class
74 Failure to Sanitize Data into a

Different Plane ('Injection')
Development Concepts (primary)699
Research Concepts (primary)1000

ChildOf Category 442 Web Problems Development Concepts699
ChildOf Category 712 OWASP Top Ten 2007 Category

A1 - Cross Site Scripting (XSS)
Weaknesses in OWASP Top Ten
(2007) (primary)629

ChildOf Category 722 OWASP Top Ten 2004 Category
A1 - Unvalidated Input

Weaknesses in OWASP Top Ten
(2004)711

ChildOf Category 725 OWASP Top Ten 2004 Category
A4 - Cross-Site Scripting (XSS)
Flaws

Weaknesses in OWASP Top Ten
(2004) (primary)711

ChildOf Category 751 2009 Top 25 - Insecure
Interaction Between
Components

Weaknesses in the 2009 CWE/SANS
Top 25 Most Dangerous Programming
Errors (primary)750

ChildOf Category 801 2010 Top 25 - Insecure
Interaction Between
Components

Weaknesses in the 2010 CWE/SANS
Top 25 Most Dangerous Programming
Errors (primary)800

CanPrecede Weakness
Base

494 Download of Code Without
Integrity Check

Research Concepts1000

PeerOf Compound
Element:

Composite

352 Cross-Site Request Forgery
(CSRF)

Research Concepts1000

ParentOf Weakness
Variant

80 Improper Sanitization of Script-
Related HTML Tags in a Web
Page (Basic XSS)

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

81 Improper Sanitization of Script
in an Error Message Web Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

83 Improper Neutralization of
Script in Attributes in a Web
Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

84 Failure to Resolve Encoded URI
Schemes in a Web Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

85 Doubled Character XSS
Manipulations

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

86 Improper Neutralization of
Invalid Characters in Identifiers
in Web Pages

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

87 Failure to Sanitize Alternate
XSS Syntax

Development Concepts (primary)699
Research Concepts (primary)1000

MemberOf View 635 Weaknesses Used by NVD Weaknesses Used by NVD

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/442.html
http://cwe.mitre.org/data/definitions/712.html
http://cwe.mitre.org/data/definitions/712.html
http://cwe.mitre.org/data/definitions/722.html
http://cwe.mitre.org/data/definitions/722.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/635.html

 PAGE 56 OF 79

(primary)635
CanFollow Weakness

Base

113 Failure to Sanitize CRLF
Sequences in HTTP Headers
('HTTP Response Splitting')

Research Concepts1000

CanFollow Weakness
Base

184 Incomplete Blacklist Research Concepts1000 Incomplete
Blacklist to Cross-
Site Scripting692

f Causal Nature
Explicit
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Cross-site scripting (XSS)

7 Pernicious Kingdoms Cross-site Scripting

CLASP Cross-site scripting

OWASP Top Ten 2007 A1 Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws

WASC 8 Cross-site Scripting

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

232 Exploitation of Privilege/Trust

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

32 Embedding Scripts in HTTP Query Strings

18 Embedding Scripts in Nonscript Elements

19 Embedding Scripts within Scripts

63 Simple Script Injection

91 XSS in IMG Tags

106 Cross Site Scripting through Log Files

198 Cross-Site Scripting in Error Pages

199 Cross-Site Scripting Using Alternate Syntax

209 Cross-Site Scripting Using MIME Type Mismatch

243 Cross-Site Scripting in Attributes

244 Cross-Site Scripting via Encoded URI Schemes

245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

246 Cross-Site Scripting Using Flash

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

References
[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and Seth Fogie. "XSS Attacks".
Syngress. 2007.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 2: Web-Server Related
Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31. McGraw-Hill. 2010.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 3: Web-Client Related
Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

"Cross-site scripting". Wikipedia. 2008-08-26. <http://en.wikipedia.org/wiki/Cross-site_scripting>.

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input Issues" Page 413. 2nd Edition.

http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/184.html
javascript:toggleblocksOC('79_Causal%20Nature');
http://capec.mitre.org232.html/
http://capec.mitre.org85.html/
http://capec.mitre.org86.html/
http://capec.mitre.org32.html/
http://capec.mitre.org18.html/
http://capec.mitre.org19.html/
http://capec.mitre.org63.html/
http://capec.mitre.org91.html/
http://capec.mitre.org106.html/
http://capec.mitre.org198.html/
http://capec.mitre.org199.html/
http://capec.mitre.org209.html/
http://capec.mitre.org243.html/
http://capec.mitre.org244.html/
http://capec.mitre.org245.html/
http://capec.mitre.org246.html/
http://capec.mitre.org247.html/
http://en.wikipedia.org/wiki/Cross-site_scripting

 PAGE 57 OF 79

Microsoft. 2002.

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". <http://ha.ckers.org/xss.html>.

Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". <http://msdn.microsoft.com/en-us/library/ms533046.aspx>.

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now Live!".
<http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx>.

"OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.

Ivan Ristic. "XSS Defense HOWTO". <http://blog.modsecurity.org/2008/07/do-you-know-how.html>.

OWASP. "Web Application Firewall". <http://www.owasp.org/index.php/Web_Application_Firewall>.

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria".
<http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html>.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.

"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. <https://bugzilla.mozilla.org/show_bug.cgi?id=380418>.

"Apache Wicket". <http://wicket.apache.org/>.

[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet".
<http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet>.

Content History
Submissions
Submission
Date

Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Time of Introduction

Veracode External2008-08-15
Suggested OWASP Top Ten 2004 mapping
CWE Content Team MITRE Internal2008-09-08
updated Alternate Terms, Applicable Platforms, Background Details, Common Consequences,
Description, Relationships, Other Notes, References, Taxonomy Mappings, Weakness
Ordinalities
CWE Content Team MITRE Internal2009-01-12
updated Alternate Terms, Applicable Platforms, Background Details, Common Consequences,
Demonstrative Examples, Description, Detection Factors, Enabling Factors for Exploitation,
Name, Observed Examples, Other Notes, Potential Mitigations, References, Relationships
CWE Content Team MITRE Internal2009-03-10
updated Potential Mitigations
CWE Content Team MITRE Internal2009-05-27
updated Name
CWE Content Team MITRE Internal2009-07-27
updated Description
CWE Content Team MITRE Internal2009-10-29
updated Observed Examples, Relationships
CWE Content Team MITRE Internal2009-12-28
updated Demonstrative Examples, Description, Detection Factors, Enabling Factors for
Exploitation, Observed Examples
CWE Content Team MITRE Internal2010-02-16
updated Applicable Platforms, Detection Factors, Potential Mitigations, References,
Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2010-04-05
updated Description, Potential Mitigations, Related Attack Patterns

Previous
Entry Names
Change Date Previous Entry Name
2008-04-11 Cross-site Scripting (XSS)
2009-01-12 Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS))
2009-05-27 Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')

BACK TO TOP

http://ha.ckers.org/xss.html
http://msdn.microsoft.com/en-us/library/ms533046.aspx
http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx
http://www.owasp.org/index.php/ESAPI
http://blog.modsecurity.org/2008/07/do-you-know-how.html
http://www.owasp.org/index.php/Web_Application_Firewall
http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html
https://bugzilla.mozilla.org/show_bug.cgi?id=380418
http://wicket.apache.org/
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 PAGE 58 OF 79

Failure to Clear Heap Memory Before Release ('Heap Inspection')
Weakness ID: 244 (Weakness Variant) Status: Draft
Description
Description Summary
Using realloc() to resize buffers that store sensitive information can leave the sensitive information exposed to
attack, because it is not removed from memory.
Extended Description
When sensitive data such as a password or an encryption key is not removed from
memory, it could be exposed to an attacker using a "heap inspection" attack that reads
the sensitive data using memory dumps or other methods. The realloc() function is
commonly used to increase the size of a block of allocated memory. This operation often
requires copying the contents of the old memory block into a new and larger block. This
operation leaves the contents of the original block intact but inaccessible to the
program, preventing the program from being able to scrub sensitive data from memory.
If an attacker can later examine the contents of a memory dump, the sensitive data
could be exposed.
Time of Introduction

 Implementation

Applicable Platforms
Languages
C
C++
Common Consequences
Scope Effect

Confidentiality Be careful using vfork() and fork() in security sensitive code. The process state will not be cleaned up and will
contain traces of data from past use.

Demonstrative Examples
Example 1
The following code calls realloc() on a buffer containing sensitive data:
(Bad Code)

Example Language: C
cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024);
...
scrub_memory(cleartext_buffer, 1024);

There is an attempt to scrub the sensitive data from memory, but realloc() is used, so a
copy of the data can still be exposed in the memory originally allocated for
cleartext_buffer.
Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness

Base
226 Sensitive Information Uncleared Before

Release
Research Concepts (primary)1000

ChildOf Weakness
Class

227 Failure to Fulfill API Contract ('API
Abuse')

Development Concepts (primary)699
Seven Pernicious Kingdoms (primary)700

ChildOf Category 633 Weaknesses that Affect Memory Resource-specific Weaknesses (primary)631
ChildOf Category 742 CERT C Secure Coding Section 08 -

Memory Management (MEM)
Weaknesses Addressed by the CERT C Secure
Coding Standard (primary)734

CanPrecede Weakness
Class

669 Incorrect Resource Transfer Between
Spheres

Research Concepts1000

MemberOf View 630 Weaknesses Examined by SAMATE Weaknesses Examined by SAMATE (primary)630

http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/633.html
http://cwe.mitre.org/data/definitions/742.html
http://cwe.mitre.org/data/definitions/742.html
http://cwe.mitre.org/data/definitions/669.html
http://cwe.mitre.org/data/definitions/669.html
http://cwe.mitre.org/data/definitions/630.html

 PAGE 59 OF 79

Affected Resources

 Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Heap Inspection

CERT C Secure Coding MEM03-C Clear sensitive information stored in reusable resources returned for reuse

White Box Definitions
A weakness where code path has:
1. start statement that stores information in a buffer
2. end statement that resize the buffer and
3. path does not contain statement that performs cleaning of the buffer

Content History
Submissions
Submission Date Submitter Organization Source

7 Pernicious Kingdoms Externally
Mined

Modifications
Modification Date Modifier Organization Source

KDM Analytics External2008-08-01
added/updated white box definitions
CWE Content Team MITRE Internal2008-09-08
updated Applicable Platforms, Name, Relationships, Other Notes, Taxonomy
Mappings
CWE Content Team MITRE Internal2008-10-14
updated Relationships
CWE Content Team MITRE Internal2008-11-24
updated Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2009-05-27
updated Demonstrative Examples, Name
CWE Content Team MITRE Internal2009-10-29
updated Common Consequences, Description, Other Notes

Previous Entry
Names
Change Date Previous Entry Name
2008-04-11 Heap Inspection
2008-09-09 Failure to Clear Heap Memory Before Release
2009-05-27 Failure to Clear Heap Memory Before Release (aka 'Heap Inspection')

BACK TO TOP

 PAGE 60 OF 79

Data Filter Injection
Risk
What might happen
An attacker could directly access all of the system's data.
Using simple tools and text editing, the attacker would be able to steal any sensitive information stored in the server
cache (such as personal user details or credit cards),
and possibly change or erase existing data that could be subsequently used for other users or relied upon for security
decisions.
The application stores temporary data in its cache, and queries this data. The application creates the query by simply
concatenating strings including the user's input.
Since the user input is neither checked for data type validity nor subsequently sanitized, the input could contain
commands that would be interpreted as such.

General Recommendations
How to avoid it
1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

Check for:
● Data type
● Size
● Range
● Format
● Expected values

2. Instead of concatenating strings:
a. Use secure database components such as stored procedures, parameterized queries, and object

bindings (for commands and parameters).
b. An even better solution is to use an ORM library, such as EntityFramework, Hibernate, or iBatis.

3. Restrict access to database objects and functionality, according to the Principle of Least Privilege.
4. If possible, avoid making security decisions based on cached data, especially data shared between users.

Source Code Examples

C#
The application creates a query using ViewState with cached data that might contain a user injected script
public class DataFilterInjection
{
 public void foo(DataView dv)
 {
 string input = ViewState["strFilterFiles"].ToString();
 dv.RowFilter = "FileName like \'%" + input + "%\'";
 }
}

The string obtained from the cached data is examined for malicious characters
public class DataFilterInjectionFixed
{
 public void foo(DataView dv)
 {
 string input = ViewState["strFilterFiles"].ToString();
 string filtered = input.Replace("'","");
 dv.RowFilter = "FileName like \'%" + filtered + "%\'";
 }

 PAGE 61 OF 79

}

 PAGE 62 OF 79

Reflected XSS Specific Clients
Risk
What might happen
An attacker could use social engineering to cause a user to send the website engineered input, rewriting web pages and
inserting malicious scripts.
The attacker can then pretend to be the original website, which would enable the attacker to steal the user's password,
request the user’s credit card information, provide false information, or run malware.
From the victim’s point of view, this is the original website, and the victim would blame the site for incurred damage.

Cause
How does it happen
The application creates web pages that include data from previous user input. The user input is embedded directly in the
page's HTML, causing the browser to display it as part of the web page.
If the input includes HTML fragments or JavaScript, these are displayed too, and the user cannot tell that this is not the
intended page.
The vulnerability is the result of embedding arbitrary user input without first encoding it in a format that would prevent
the browser from treating it like HTML instead of plain text.

General Recommendations
How to avoid it
1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

Check for:
● Data type
● Size
● Range
● Format
● Expected values

2. Fully encode all dynamic data before embedding it in output.
3. Encoding should be context-sensitive. For example:

● HTML encoding for HTML content
● HTML Attribute encoding for data output to attribute values
● JavaScript encoding for server-generated JavaScript

4. Consider using either the ESAPI encoding library, or the built-in platform functions. For earlier versions of
ASP.NET, consider using the AntiXSS library.
5. In the Content-Type HTTP response header, explicitly define character encoding (charset) for the entire page.
6. Set the httpOnly flag on the session cookie, to prevent XSS exploits from stealing the cookie.

Source Code Examples

 PAGE 63 OF 79

Cookieless Authentication Enabled
Weakness ID: 10704 (Weakness Base) Status: Draft
Description
Description Summary
When cookieless authentication in the application is enabled, it can cause to the session being hijacked.
Extended Description
When the authentication state of the application is set to cookieless, the authentication token of the application
appeares in the page URL and not in the cookie.
In this case, an attacker can take over the session by impersonating legitimate user.
Time of Introduction

 Implementation
 Operation

Applicable Platforms
Languages
ASP.NET
Technology Classes
Web-Server
Demonstrative Examples
Example :
The following code in ASP.NET describes a vulnerable configuration of cookieless
authentication in a web.config file:
(Bad Code)

Example Language: ASP.NET
<configuration>
<system.web>
<authentication mode="Forms">
<forms cookieless="UseUri">

Potential Mitigations
Disable cookieless authentication by setting the "cookieless" attirbute to "UseCookies" .
Store the authentication tokens in cookies.

 PAGE 64 OF 79

Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
Weakness ID: 614 (Weakness Variant) Status: Draft
Description
Description Summary
The Secure attribute for sensitive cookies in HTTPS sessions is not set, which could cause the user agent to
send those cookies in plaintext over an HTTP session.
Time of Introduction

 Implementation

Demonstrative Examples
Example 1
The snippet of code below, taken from a servlet doPost() method, sets an accountID
cookie (sensitive) without calling setSecure(true).
(Bad Code)

Example Language: Java
Cookie c = new Cookie(ACCOUNT_ID, acctID);
response.addCookie(c);
Observed Examples
Reference Description

CVE-2004-
0462

A product does not set the Secure attribute for sensitive cookies in HTTPS sessions, which could cause the user
agent to send those cookies in plaintext over an HTTP session with the product.

CVE-2008-
3663

A product does not set the secure flag for the session cookie in an https session, which can cause the cookie to be
sent in http requests and make it easier for remote attackers to capture this cookie.

CVE-2008-
3662

A product does not set the secure flag for the session cookie in an https session, which can cause the cookie to be
sent in http requests and make it easier for remote attackers to capture this cookie.

CVE-2008-
0128

A product does not set the secure flag for a cookie in an https session, which can cause the cookie to be sent in http
requests and make it easier for remote attackers to capture this cookie.

Potential Mitigations
Always set the secure attribute when the cookie should sent via HTTPS only.

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness Base 311 Missing Encryption of Sensitive Data Development Concepts (primary)699

Research Concepts (primary)1000
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

102 Session Sidejacking

Content History
Submissions
Submission Date Submitter Organization Source

Anonymous Tool Vendor (under NDA) Externally Mined
Modifications
Modification Date Modifier Organization Source

Sean Eidemiller Cigital External2008-07-01
added/updated demonstrative examples
Eric Dalci Cigital External2008-07-01
updated Potential Mitigations, Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2008-10-14
updated Observed Examples
CWE Content Team MITRE Internal2009-03-10
updated Name
CWE Content Team MITRE Internal2009-05-27
updated Related Attack Patterns

Previous Entry Names

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0462
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0462
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3663
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3663
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cwe.mitre.org/data/definitions/311.html
http://capec.mitre.org102.html/

 PAGE 65 OF 79

Change Date Previous Entry Name
2008-04-11 Unset Secure Attribute for Sensitive Cookies in HTTPS Session

BACK TO TOP

 PAGE 66 OF 79

Client DOM Open Redirect
Risk
What might happen
An attacker could use social engineering to get a victim to click a link to the application, so that the user will be
immediately redirected to another, arbitrary site.
Users may think that they are still in the original application site. The second site may be offensive, contain malware, or,
most commonly, be used for phishing.

Cause
How does it happen
The application redirects the user’s browser to a URL provided in a user request, without warning users that they are
being redirected outside the site.
An attacker could use social engineering to get a victim to click a link to the application with a parameter defining
another site to which the application will redirect the user’s browser, and the user may not be aware of the redirection.

General Recommendations
How to avoid it
1. Ideally, do not allow arbitrary URLs for redirection. Instead, create a server-side mapping from user-provided
parameter values to legitimate URLs.
2. If it is necessary to allow arbitrary URLs:

● For URLs inside the application site, first filter and encode the user-provided parameter, and then
use it as a relative URL by prefixing it with the application site domain.

● For URLs outside the application (if necessary), use an intermediate disclaimer page to provide
users with a clear warning that they are leaving your site

Source Code Examples

C#
Avoid redirecting to arbitrary URLs, instead map the parameter to a list of static URLs.

Response.Redirect(getUrlById(targetUrlId));

Java
Avoid redirecting to arbitrary URLs, instead map the parameter to a list of static URLs.

Response.Redirect(getUrlById(targetUrlId));

 PAGE 67 OF 79

Use of Insufficiently Random Values
Weakness ID: 330 (Weakness Class) Status: Usable
Description
Description Summary
The software may use insufficiently random numbers or values in a security context that depends on
unpredictable numbers.
Extended Description
When software generates predictable values in a context requiring unpredictability, it
may be possible for an attacker to guess the next value that will be generated, and use
this guess to impersonate another user or access sensitive information.
Time of Introduction

 Architecture and Design
 Implementation

Applicable Platforms
Languages
Language-independent
Common Consequences
Scope Effect

Confidentiality When a protection mechanism relies on random values to restrict access to a sensitive resource, such as a session
ID or a seed for generating a cryptographic key, then the resource being protected could be accessed by guessing
the ID or key.

Confidentiality
Availability If software relies on unique, unguessable IDs to identify a resource, an attacker might be able to guess an ID for a

resource that is owned by another user. The attacker could then read the resource, or pre-create a resource with
the same ID to prevent the legitimate program from properly sending the resource to the intended user. For
example, a product might maintain session information in a file whose name is based on a username. An attacker
could pre-create this file for a victim user, then set the permissions so that the application cannot generate the
session for the victim, preventing the victim from using the application.

Integrity When an authorization or authentication mechanism relies on random values to restrict access to restricted
functionality, such as a session ID or a seed for generating a cryptographic key, then an attacker may access the
restricted functionality by guessing the ID or key.

Likelihood of Exploit
Medium to High
Demonstrative Examples
Example 1
The following code uses a statistical PRNG to create a URL for a receipt that remains
active for some period of time after a purchase.
(Bad Code)

Example Language: Java
String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return(baseUrl + ranGen.nextInt(400000000) + ".html");
}

This code uses the Random.nextInt() function to generate "unique" identifiers for the
receipt pages it generates. Because Random.nextInt() is a statistical PRNG, it is easy for
an attacker to guess the strings it generates. Although the underlying design of the
receipt system is also faulty, it would be more secure if it used a random number
generator that did not produce predictable receipt identifiers, such as a cryptographic
PRNG.

 PAGE 68 OF 79

Observed Examples
Reference Description

CVE-2009-
3278

Crypto product uses rand() library function to generate a recovery key, making it easier to conduct brute force
attacks.

CVE-2009-
3238

Random number generator can repeatedly generate the same value.

CVE-2009-
2367

Web application generates predictable session IDs, allowing session hijacking.

CVE-2009-
2158

Password recovery utility generates a relatively small number of random passwords, simplifying brute force
attacks.

CVE-2009-
0255

Cryptographic key created with an insufficiently random seed.

CVE-2009-
0255

Cryptographic key created with a seed based on the system time.

CVE-2008-
5162

Kernel function does not have a good entropy source just after boot.

CVE-2008-
4905

Blogging software uses a hard-coded salt when calculating a password hash.

CVE-2008-
4929

Bulletin board application uses insufficiently random names for uploaded files, allowing other users to access
private files.

CVE-2008-
3612

Handheld device uses predictable TCP sequence numbers, allowing spoofing or hijacking of TCP connections.

CVE-2008-
2433

Web management console generates session IDs based on the login time, making it easier to conduct session
hijacking.

CVE-2008-
0166

SSL library uses a weak random number generator that only generates 65,536 unique keys.

CVE-2008-
2108

Chain: insufficient precision causes extra zero bits to be assigned, reducing entropy for an API function that
generates random numbers.

CVE-2008-
2020

CAPTCHA implementation does not produce enough different images, allowing bypass using a database of all
possible checksums.

CVE-2008-
0087

DNS client uses predictable DNS transaction IDs, allowing DNS spoofing.

CVE-2008-
0141

Application generates passwords that are based on the time of day.

Potential Mitigations
Phase: Architecture and Design
Use a well-vetted algorithm that is currently considered to be strong by experts in the field, and select well-tested
implementations with adequate length seeds.
In general, if a pseudo-random number generator is not advertised as being cryptographically secure, then it is probably a
statistical PRNG and should not be used in security-sensitive contexts.
Pseudo-random number generators can produce predictable numbers if the generator is known and the seed can be guessed. A
256-bit seed is a good starting point for producing a "random enough" number.

Phase: Implementation
Consider a PRNG that re-seeds itself as needed from high quality pseudo-random output sources, such as hardware devices.

Phase: Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize
the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Phase: Testing
Perform FIPS 140-2 tests on data to catch obvious entropy problems.

Phase: Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools
that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This
is especially the case with weaknesses that are related to design and business rules.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2158
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2158
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0255
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0255
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0255
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0255
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4905
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4905
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3612
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3612
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2433
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2433
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2020
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2020
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0141
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0141

 PAGE 69 OF 79

Phase: Testing
Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This
technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify
that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running
process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon,
Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and look for library functions that indicate when randomness is being used. Run the process
multiple times to see if the seed changes. Look for accesses of devices or equivalent resources that are commonly used for strong
(or weak) randomness, such as /dev/urandom on Linux. Look for library or system calls that access predictable information such
as process IDs and system time.

Background Details
Computers are deterministic machines, and as such are unable to produce true randomness. Pseudo-Random Number Generators
(PRNGs) approximate randomness algorithmically, starting with a seed from which subsequent values are calculated. There are
two types of PRNGs: statistical and cryptographic. Statistical PRNGs provide useful statistical properties, but their output is highly
predictable and forms an easy to reproduce numeric stream that is unsuitable for use in cases where security depends on
generated values being unpredictable. Cryptographic PRNGs address this problem by generating output that is more difficult to
predict. For a value to be cryptographically secure, it must be impossible or highly improbable for an attacker to distinguish
between it and a truly random value.

Weakness Ordinalities
Ordinality Description

Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Category 254 Security Features Development Concepts (primary)699

Seven Pernicious Kingdoms (primary)700
ChildOf Category 723 OWASP Top Ten 2004 Category

A2 - Broken Access Control
Weaknesses in OWASP Top Ten (2004) (primary)711

ChildOf Category 747 CERT C Secure Coding Section 49
- Miscellaneous (MSC)

Weaknesses Addressed by the CERT C Secure Coding
Standard (primary)734

ChildOf Category 753 2009 Top 25 - Porous Defenses Weaknesses in the 2009 CWE/SANS Top 25 Most
Dangerous Programming Errors (primary)750

ChildOf Category 808 2010 Top 25 - Weaknesses On the
Cusp

Weaknesses in the 2010 CWE/SANS Top 25 Most
Dangerous Programming Errors (primary)800

ParentOf Weakness
Variant

329 Not Using a Random IV with CBC
Mode

Research Concepts (primary)1000

ParentOf Weakness
Base

331 Insufficient Entropy Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

334 Small Space of Random Values Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Class

335 PRNG Seed Error Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

338 Use of Cryptographically Weak
PRNG

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Class

340 Predictability Problems Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

341 Predictable from Observable State Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

342 Predictable Exact Value from
Previous Values

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

343 Predictable Value Range from
Previous Values

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

344 Use of Invariant Value in
Dynamically Changing Context

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

804 Guessable CAPTCHA Development Concepts699
Research Concepts1000

MemberOf View 1000 Research Concepts Research Concepts (primary)1000
Relationship Notes
This can be primary to many other weaknesses such as cryptographic errors, authentication errors, symlink following, information
leaks, and others.

Functional Areas

 Non-specific
 Cryptography
 Authentication

http://cwe.mitre.org/data/definitions/254.html
http://cwe.mitre.org/data/definitions/723.html
http://cwe.mitre.org/data/definitions/723.html
http://cwe.mitre.org/data/definitions/747.html
http://cwe.mitre.org/data/definitions/747.html
http://cwe.mitre.org/data/definitions/753.html
http://cwe.mitre.org/data/definitions/808.html
http://cwe.mitre.org/data/definitions/808.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/334.html
http://cwe.mitre.org/data/definitions/335.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/340.html
http://cwe.mitre.org/data/definitions/341.html
http://cwe.mitre.org/data/definitions/342.html
http://cwe.mitre.org/data/definitions/342.html
http://cwe.mitre.org/data/definitions/343.html
http://cwe.mitre.org/data/definitions/343.html
http://cwe.mitre.org/data/definitions/344.html
http://cwe.mitre.org/data/definitions/344.html
http://cwe.mitre.org/data/definitions/804.html
http://cwe.mitre.org/data/definitions/1000.html

 PAGE 70 OF 79

 Session management

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Randomness and Predictability

7 Pernicious Kingdoms Insecure Randomness

OWASP Top Ten 2004 A2 CWE More
Specific

Broken Access Control

CERT C Secure Coding MSC30-C Do not use the rand() function for generating pseudorandom
numbers

WASC 11 Brute Force

WASC 18 Credential/Session Prediction

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

59 Session Credential Falsification through Prediction

112 Brute Force

281 Analytic Attacks

References
J. Viega and G. McGraw. "Building Secure Software: How to Avoid Security Problems the Right Way". 2002.

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Using Poor Random Numbers" Page 259. 2nd Edition.
Microsoft. 2002.

Content History
Submissions
Submission Date Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Background Details, Relationships, Other Notes, Relationship Notes, Taxonomy
Mappings, Weakness Ordinalities
CWE Content Team MITRE Internal2008-11-24
updated Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2009-01-12
updated Description, Likelihood of Exploit, Other Notes, Potential Mitigations, Relationships
CWE Content Team MITRE Internal2009-03-10
updated Potential Mitigations
CWE Content Team MITRE Internal2009-05-27
updated Demonstrative Examples, Related Attack Patterns
CWE Content Team MITRE Internal2009-12-28
updated Applicable Platforms, Common Consequences, Description, Observed Examples,
Potential Mitigations, Time of Introduction
CWE Content Team MITRE Internal2010-02-16
updated References, Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2010-04-05
updated Related Attack Patterns

Previous Entry
Names
Change Date Previous Entry Name
2008-04-11 Randomness and Predictability

BACK TO TOP

http://capec.mitre.org59.html/
http://capec.mitre.org112.html/
http://capec.mitre.org281.html/

 PAGE 71 OF 79

Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)
Weakness ID: 80 (Weakness Variant) Status: Incomplete
Description
Description Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly sanitizes
special characters such as "<", ">", and "&" that could be interpreted as web-scripting elements when they are
sent to a downstream component that processes web pages.
Extended Description
This may allow such characters to be treated as control characters, which are executed
client-side in the context of the user's session. Although this can be classified as an
injection problem, the more pertinent issue is the failure to convert such special
characters to respective context-appropriate entities before displaying them to the user.
Time of Introduction

 Implementation

Applicable Platforms
Languages
All
Likelihood of Exploit
High to Very High
Demonstrative Examples
Example 1
In the following example, a guestbook comment isn't properly sanitized for script-
related tags before being displayed in a client browser.
(Bad Code)

Example Language: JSP
<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getId() %></p>
<p><%= e.getText() %></p>
<%
} %>
Observed Examples
Reference Description

CVE-2002-0938 XSS in parameter in a link.

CVE-2002-1495 XSS in web-based email product via attachment filenames.

CVE-2003-1136 HTML injection in posted message.

CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list) defining the specific characters and
format allowed. All input should be sanitized, not just parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often encounter data from the request
that is reflected by the application server or the application that the development team did not anticipate. Also, a field that is not
currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received from the user and is now being
written to the request.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1495
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1136
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2171

 PAGE 72 OF 79

Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers
that support the HttpOnly feature (such as Internet Explorer), this attribute prevents the user's session cookie from being
accessed by client-side scripts, including scripts inserted due to a XSS attack.

Weakness Ordinalities
Ordinality Description

Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness

Base
79 Failure to Preserve Web Page Structure ('Cross-site

Scripting')
Development Concepts (primary)699
Research Concepts (primary)1000

MemberOf View 630 Weaknesses Examined by SAMATE Weaknesses Examined by SAMATE
(primary)630

f Causal Nature
Explicit
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Basic XSS

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

18 Embedding Scripts in Nonscript Elements

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where
a. the input is part of the data item and
b. the input contains XSS syntax

Content History
Submissions
Submission Date Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification Date Modifier Organization Source

Sean Eidemiller Cigital External2008-07-01
added/updated demonstrative examples
Eric Dalci Cigital External2008-07-01
updated Time of Introduction

KDM Analytics External2008-08-01
added/updated white box definitions
CWE Content Team MITRE Internal2008-09-08
updated Relationships, Taxonomy Mappings, Weakness Ordinalities
CWE Content Team MITRE Internal2008-10-14
updated Description
CWE Content Team MITRE Internal2009-05-27
updated Demonstrative Examples, Description, Name
KDM Analytics External2009-07-17
Improved the White Box Definition
CWE Content Team MITRE Internal2009-07-27
updated White Box Definitions

Previous Entry
Names
Change Date Previous Entry Name
2008-04-11 Basic XSS
2009-05-27 Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic

XSS)
BACK TO TOP

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/630.html
javascript:toggleblocksOC('80_Causal%20Nature');
http://capec.mitre.org18.html/

 PAGE 73 OF 79

 PAGE 74 OF 79

ASP.NET Misconfiguration: Creating Debug Binary
Weakness ID: 11 (Weakness Variant) Status: Draft
Description
Description Summary
Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give
detailed debugging messages and should not be used in production environments.
Debug binaries are meant to be used in a development or testing environment and can
pose a security risk if they are deployed to production.
Time of Introduction

 Implementation
 Operation

Applicable Platforms
Languages
.NET
Common Consequences
Scope Effect

Confidentiality Attackers can leverage the additional information they gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the application.

Demonstrative Examples
Example 1
The file web.config contains the debug mode setting. Setting debug to "true" will let the
browser display debugging information.
(Bad Code)

Example Language: XML
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"
debug="true"
/>
...
</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false when the application is deployed
into production (See demonstrative example).

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include debugging information. The use of
debug binaries causes an application to provide as much information about itself as possible to the user.

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Category 2 Environment Seven Pernicious Kingdoms (primary)700
ChildOf Category 10 ASP.NET Environment Issues Development Concepts (primary)699
ChildOf Weakness Variant 215 Information Leak Through Debug Information Research Concepts (primary)1000

Taxonomy Mappings

http://cwe.mitre.org/data/definitions/2.html
http://cwe.mitre.org/data/definitions/10.html
http://cwe.mitre.org/data/definitions/215.html

 PAGE 75 OF 79

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary

Content History
Submissions
Submission
Date

Submitter Organization Source

7 Pernicious Kingdoms Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Demonstrative Example, Potential Mitigations, Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Relationships, Other Notes, Taxonomy Mappings
CWE Content Team MITRE Internal2008-11-24
updated Description, Other Notes
CWE Content Team MITRE Internal2009-07-27
updated Background Details, Common Consequences, Demonstrative Examples,
Description, Other Notes

BACK TO TOP

 PAGE 76 OF 79

Non Unique Form Name
Compound Element ID: 10707Status: Draft
Description
Description Summary
When there are multiple ASP.NET applications running on the server,it's very important to set a unique
authentication cookie name for each of the applications.
In case there are applications with the same authentication cookie name, when user logges in into one of the
application he can gain acces to the other.
Time of Introduction

 Implementation
 Operation

Applicable Platforms
Languages
ASP.NET
Technology Classes
Web-Server
Demonstrative Examples
Example:
This example in ASP.NET shows us a vulnerable configuration of forms name in a
web.config file:
(Bad Code)

Example Language: ASP.NET
<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".ASPXAUTH">

.ASPXAUTH is the default value for the name of the authentication cookie.
In case there is only one ASP.NET application running on the server the code is secure.
In case there is more ,user logging in to one of the applications can gain access to the
other.
For example, when a user logges into some online service, he might inadvertently gain
access to the administraion application of the service.

Potential Mitigations
Set the authentication cookie name to a unique value for each of your applications.

 PAGE 77 OF 79

Insufficient Session Expiration
Weakness ID: 613 (Weakness Base) Status: Incomplete
Description
Description Summary
According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to reuse old
session credentials or session IDs for authorization."
Time of Introduction

 Architecture and Design
 Implementation

Demonstrative Examples
Example 1
The following snippet was taken from a J2EE web.xml deployment descriptor in which
the session-timeout parameter is explicitly defined (the default value depends on the
container). In this case the value is set to -1, which means that a session will never
expire.
(Bad Code)

Example Language: Java
<web-app>
[...snipped...]

<session-config>
<session-timeout>-1</session-timeout>
</session-config>
</web-app>
Potential Mitigations
Set sessions/credentials expiration date.

Other Notes
The lack of proper session expiration may improve the likely success of certain attacks. For example, an attacker may intercept a
session ID, possibly via a network sniffer or Cross-site Scripting attack. Although short session expiration times do not help if a
stolen token is immediately used, they will protect against ongoing replaying of the session ID. In another scenario, a user might
access a web site from a shared computer (such as at a library, Internet cafe, or open work environment). Insufficient Session
Expiration could allow an attacker to use the browser's back button to access web pages previously accessed by the victim.

Relationships
Nature Type ID Name View(s) this relationship

pertains to
ChildOf Category 361 Time and State Development Concepts

(primary)699
ChildOf Weakness Base 672 Operation on a Resource after Expiration or Release Research Concepts

(primary)1000
ChildOf Category 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
Weaknesses in OWASP Top Ten
(2004) (primary)711

CanPrecede Weakness Class 287 Improper Authentication Development Concepts699
Research Concepts1000

RequiredBy Compound
Element:

Composite

352 Cross-Site Request Forgery (CSRF) Research Concepts1000

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

WASC

WASC 47 Insufficient Session Expiration

Content History
Submissions
Submission Date Submitter Organization Source

WASC Externally Mined
Modifications

http://cwe.mitre.org/data/definitions/361.html
http://cwe.mitre.org/data/definitions/672.html
http://cwe.mitre.org/data/definitions/724.html
http://cwe.mitre.org/data/definitions/724.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/352.html

 PAGE 78 OF 79

Modification Date Modifier Organization Source
Sean Eidemiller Cigital External2008-07-01
added/updated demonstrative examples
Eric Dalci Cigital External2008-07-01
updated Potential Mitigations, Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Relationships, Other Notes, Taxonomy Mappings
CWE Content Team MITRE Internal2009-03-10
updated Relationships
CWE Content Team MITRE Internal2010-02-16
updated Taxonomy Mappings

BACK TO TOP

 PAGE 79 OF 79

Scanned Languages

Language Hash Number Change Date
CSharp 0170660826203684 5/21/2015
JavaScript 0633654640145729 5/21/2015
VbScript 2005446206231574 5/21/2015

	Reflected_XSS_All_Clients
	Client_DOM_XSS
	Client_Potential_XSS
	Heap_Inspection
	Data_Filter_Injection
	Client_Cross_Frame_Scripting_Attack
	Reflected_XSS_Specific_Clients
	CookieLess_Authentication
	RequireSSL
	Client_Heuristic_Poor_XSS_Validation
	Unprotected_Cookie
	Client_DOM_Open_Redirect
	Client_Insecure_Randomness
	DebugEnabled
	NonUniqueFormName
	SlidingExpiration
	Client_DOM_XSS_(Description)
	Reflected_XSS_All_Clients_(Description)
	Client_Potential_XSS_(Description)
	Client_Cross_Frame_Scripting_Attack_(Des
	79
	Heap_Inspection_(Description)
	244
	Data_Filter_Injection_(Description)
	Reflected_XSS_Specific_Clients_(Descript
	CookieLess_Authentication_(Description)
	90
	RequireSSL_(Description)
	614
	Client_DOM_Open_Redirect_(Description)
	Client_Insecure_Randomness_(Description)
	330
	Client_Heuristic_Poor_XSS_Validation_(De
	80
	DebugEnabled_(Description)
	11
	NonUniqueFormName_(Description)
	352
	SlidingExpiration_(Description)
	613

